Article contents
ZERO-CYCLES ON NORMAL PROJECTIVE VARIETIES
Published online by Cambridge University Press: 11 February 2022
Abstract
We prove an extension of the Kato–Saito unramified class field theory for smooth projective schemes over a finite field to a class of normal projective schemes. As an application, we obtain Bloch’s formula for the Chow groups of $0$-cycles on such schemes. We identify the Chow group of
$0$-cycles on a normal projective scheme over an algebraically closed field to the Suslin homology of its regular locus. Our final result is a Roitman torsion theorem for smooth quasiprojective schemes over algebraically closed fields. This completes the missing p-part in the torsion theorem of Spieß and Szamuely.
MSC classification
- Type
- Research Article
- Information
- Journal of the Institute of Mathematics of Jussieu , Volume 22 , Issue 5 , September 2023 , pp. 2241 - 2295
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809000527662-0702:S1474748022000032:S1474748022000032_inline1695.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809000527662-0702:S1474748022000032:S1474748022000032_inline1696.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809000527662-0702:S1474748022000032:S1474748022000032_inline1697.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809000527662-0702:S1474748022000032:S1474748022000032_inline1698.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809000527662-0702:S1474748022000032:S1474748022000032_inline1699.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809000527662-0702:S1474748022000032:S1474748022000032_inline1700.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809000527662-0702:S1474748022000032:S1474748022000032_inline1701.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809000527662-0702:S1474748022000032:S1474748022000032_inline1702.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809000527662-0702:S1474748022000032:S1474748022000032_inline1703.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809000527662-0702:S1474748022000032:S1474748022000032_inline1704.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809000527662-0702:S1474748022000032:S1474748022000032_inline1705.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809000527662-0702:S1474748022000032:S1474748022000032_inline1706.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809000527662-0702:S1474748022000032:S1474748022000032_inline1707.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230809000527662-0702:S1474748022000032:S1474748022000032_inline1708.png?pub-status=live)
- 2
- Cited by