This article introduces the Clairaut conformal Riemannian map. This notion includes the previously studied notions of Clairaut conformal submersion, Clairaut Riemannian submersion, and the Clairaut Riemannian map as particular cases, and is well known in the classical theory of surfaces. Toward this, we find the necessary and sufficient condition for a conformal Riemannian map $\varphi : M \to N$ between Riemannian manifolds to be a Clairaut conformal Riemannian map with girth $s = e^f$. We show that the fibers of $\varphi $ are totally umbilical with mean curvature vector field the negative gradient of the logarithm of the girth function, that is, $-\nabla f$. Using this, we obtain a local splitting of M as a warped product and a usual product, if the horizontal space is integrable (under some appropriate hypothesis). We also provide some examples of the Clairaut conformal Riemannian maps to confirm our main theorem. We observe that the Laplacian of the logarithmic girth, that is, of f, on the total manifold takes the special form. It reduces to the Laplacian on the horizontal distribution, and if it is nonnegative, the universal covering space of M becomes a product manifold, under some hypothesis on f. Analysis of the Laplacian of f also yields the splitting of the universal covering space of M as a warped product under some appropriate conditions. We calculate the sectional curvature and mixed sectional curvature of M when f is a distance function. We also find the relationships between the total manifold and the fibers being symmetrical and, in particular, having constant sectional curvature, and from there, we compare their universal covering spaces, if fibers are also complete, provided f is a distance function. We also find a condition on the curvature tensor of the fibers to be semi-symmetric, provided that the total manifold is semi-symmetric and f is a distance function. In turn, this gives the warped product of symmetric, semi-symmetric spaces into two symmetric, semi-symmetric subspaces (under some hypothesis). Also if the Hessian or the Laplacian of the Riemannian curvature tensor fields is zero, or has a harmonic curvature tensor, then the fibers of $\varphi $ also satisfy the same property, if f is also a distance function. By obtaining Bochner-type formulas for Clairaut conformal Riemannian maps, we establish the relations between the divergences of the Ricci curvature tensor on fibers and horizontal space and the corresponding scalar curvature. We also study the horizontal Killing vector field of constant length and show that they are parallel under appropriate hypotheses. This in turn gives the splitting of the total manifold, if it admits a horizontal parallel Killing vector field and if the horizontal space is integrable. Finally, assuming that $\nabla f$ is a nontrivial gradient Ricci soliton on M, we prove that any vertical vector field is incompressible and hence the volume form of the fiber is invariant under the flow of the vector field.