The role of the ubiquitin-proteasome pathway (UPP) in mitosis is well known. However, its role in meiotic division is still poorly documented, especially in the activation of mammalian oocytes. In this study, the role of proteasome in the spontaneous and parthenogenetic activation of rat oocytes was investigated. We found that ALLN, an inhibitor of proteasome, when applied to metaphase II oocytes, inhibited spontaneous activation, blocked extrusion of the second polar body (PB) and caused the withdrawal of the partially extruded second PB. ALLN also inhibited the parthenogenetic activation induced by cycloheximide, but had no effect on the formation of pronuclei in activated eggs. In metaphase and anaphase, ubiquitin and proteasome localized to the meiotic spindle, concentrating on both sides of the oocyte–second PB boundary during PB extrusion. This pattern of cellular distribution suggests that UPP may have a role in regulating nuclear division and cytokinesis. Ubiquitin was seen to form a ring around the pronucleus, whereas proteasome was evenly distributed in the pronuclear region. Taken together, our results indicate that (1) UPP is required for the transitions of oocytes from metaphase II to anaphase II and from anaphase II to the end of meiosis; and (2) the UPP plays a role in cytokinesis of the second meiotic division.