Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T12:57:58.317Z Has data issue: false hasContentIssue false

Intermediate filament proteins immunologically related to cytokeratins in the oocyte of the fish Cyprinus carpio

Published online by Cambridge University Press:  26 September 2008

Caterina Mencarelli*
Affiliation:
Department of Evolutionary Biology, University of Siena and Department of Biology, University of Milan, Italy
Franco Cotelli
Affiliation:
Department of Evolutionary Biology, University of Siena and Department of Biology, University of Milan, Italy
*
Caterina Mencarelli, Department of Evolutionary Biology, University of Siena, Via Mattioli 4, 53100 Siena, Italy. Tel: +39 577 298894. Fax: +39 577 298898. e-mail: [email protected].

Summary

We have used monoclonal antibodies specific for different sets of human cytokeratins and the anti-IFA (Intermediate Filament Antigen) antibody to investigate the expression of intermediate filament proteins in the mature oocyte of the teleostCyprinus carpio. Several polypeptides have been identified, showing molecular weights ranging from 43 to 65kDa. Two-dimensional analysis of the immunoreactive species revealed the presence of at least six major protein spots and a series of minor components, grouped in quite a narrow pI range from 5.52 to 6.28. The general complexity of the carp oocyte cytokeratin-related cytoskeleton appears to be higher than those described for oocytes of other vertebrate species.

Type
Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bearer, E.L. (ed.) (1992). Cytoskeleton in development. Curr. Top. Dev. Biol. 26, 191.CrossRefGoogle ScholarPubMed
Boyle, J.A. & Ernst, S.G. (1989). Sea urchin oocytes possess elaborated cortical arrays of microfilaments, microtubules and intermediate filaments. Dev. Biol. 134, 72–84.CrossRefGoogle ScholarPubMed
Coulombe, P.A. (1993). The cellular and molecular biology of keratins: beginning a new era. Curr. Opin. Cell Biol. 5, 1729.CrossRefGoogle ScholarPubMed
Eriksson, J.E., Opal, P. & Goldman, R.D. (1992). Intermediate filament dynamics. Curr. Opin. Cell Biol. 4, 99104.CrossRefGoogle ScholarPubMed
Franz, J.K. & Franke, W.W. (1986). Cloning of cDNA and aminoacid sequence of a cytokeratin expressed in oocytes ofXenopus laevis. Proc. Nati. Acad. Sci. USA 83, 6475–9.CrossRefGoogle Scholar
Franz, J.K., Gall, L., Williams, M.A., Picheral, B. & Franke, W.W. (1983). Intermediate-size filaments in a germ-cell: expression of cytokeratins in oocytes and eggs of the frog Xenopus. Proc. Natl. Acad. Sci. USA 80, 6254–8.CrossRefGoogle Scholar
Fuchs, E. & Weber, K. (1994). Intermediate filaments: structure, dynamics, functions and disease. Annu. Rev. BioChem. 63, 345–82.CrossRefGoogle ScholarPubMed
Gall, L., Le Guen, P. & Huneau, D. (1989). Cytokeratin-like proteins in the sheep oocyte. Cell Differ. Dev. 28, 95104.CrossRefGoogle ScholarPubMed
Gallicano, G.I., McGaughey, R.W. & Capco, D.G. (1991). Cytoskeleton of the mouse egg and embryo: reorganization of planar elements. Cell Motil. Cytoskeleton 18, 143–54.CrossRefGoogle ScholarPubMed
Gallicano, G.I., Larabell, C.A., McGaughey, R.W. & Capco, D.G. (1994). Novel cytoskeletal elements in mammalian eggs are composed of a unique arrangement of inter mediate filaments. Mech. Dev. 45, 211–26.Google Scholar
Gard, D.L. (1995). Axis formation during amphibian oogenesis: reevaluating the role of the cytoskeleton. Curr. Top. Dev. Biol. 30, 215–52.Google ScholarPubMed
Geisler, N., Kaufmann, E., Fischer, S., Plessmann, U. & Weber, K. (1983). Neurofilament architecture combines structural principles of intermediate filaments with carboxyterminal extensions increasing in size between triplet proteins. EMBO J. 2, 1295–302.CrossRefGoogle ScholarPubMed
Georgatos, S.D. (1993). Dynamics of intermediate filaments: recent progress and unanswered questions. FEBS Lett. 318, 101–7.CrossRefGoogle ScholarPubMed
Godsave, S.F., Anderton, B.H., Heasman, J. & Wylie, C.C. (1984). Oocytes and early embryos of Xenopus laevis contain intermediate filaments which react with antimammalian vimentin antibodies. J. Embryol. Exp. Morphol. 83, 169–87.Google ScholarPubMed
Klymkowsky, M.W., Maynell, L.A. & Polson, A.G. (1987). Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos. Development 100, 543–57.CrossRefGoogle ScholarPubMed
Klymkowsky, M.W., Bachant, J.B. & Domingo, A. (1989). Functions of intermediate filaments. Cell Motil. Cytoskeleton 14, 309–31.Google Scholar
Klymkowsky, M.W., Maynell, L.A. & Nislow, C. (1991). Cytokeratin phosphorylation, cytokeratin filament severing and the solubilization of the maternal mRNA Vgl. J. Cell Biol. 114, 787–97.CrossRefGoogle Scholar
Klymkowsky, M.W., Shook, D.R. & Maynell, L.A. (1992). Evidence that the deep keratin filament system of the Xenopus embryo acts to ensure normal gastrulation. Proc. Nati. Acad. Sci. USA 89, 8726–40.CrossRefGoogle Scholar
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–5.CrossRefGoogle ScholarPubMed
Lazarides, E. (1980). Intermediate filaments as mechanical integrators of cellular space. Nature 283, 249–56.CrossRefGoogle ScholarPubMed
Leoncini, P., Cintorino, M., Vindigni, C., Leoncini, L., Armellini, D., Bugnoli, M., Skalli, O. & Gabbiani, G. (1988). Distribution of cytoskeletal and contractile proteins in normal and tumor bearing salivary and lacrimal glands. Virchows Arch. A Pathol. Anat. Histopathol. 412, 329–37.CrossRefGoogle ScholarPubMed
Markl, J., Winter, S. & Franke, W.W. (1989). The catalog and the expression complexity of cytokeratins in a lower vertebrate: biochemical identification of cytokeratins in a teleost fish, the rainbow trout. Eur. J. Cell Biol. 50, 1–16.Google Scholar
Moll, R., Franke, W.W., Schiller, D.L., Geiger, B. & Krepler, R. (1982). The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31, 11–24.Google Scholar
O'Farrell, P.H. (1975). High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–21.CrossRefGoogle ScholarPubMed
Plancha, C.E., Carmo–Fonseca, M. & David Ferreira, J.F. (1989). Cytokeratin filaments are present in golden hamster oocytes and early embryos. Differentiation 42, 19.CrossRefGoogle ScholarPubMed
Pondel, M. & King, M.L. (1988). Localized maternal mRNA related to transforming growth factor b mRNA is concentrated in a cytokeratin-enriched fraction from Xenopus oocytes. Proc. Natl. Acad. Sci. USA 85, 7612–16.CrossRefGoogle Scholar
Pruss, R.M., Mirsky, R., Raff, M.C., Thorpe, R., Dowding, A.J. & Anderton, B.H. (1981). All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody. Cell 27, 419–28.CrossRefGoogle Scholar
Schroeder, T.E. & Otto, J.J. (1991). Snoods: a periodic network containing cytokeratin in the cortex of starfish oocytes. Dev. Biol. 144,240–7.CrossRefGoogle ScholarPubMed
Singh, S. & Gupta, P.D. (1994). Intermediate filaments: heterogeneous expression pattern and modulation. Can their role in structure and function of the cell be ascertained? Biol. Cell 82, 1–10.CrossRefGoogle Scholar
Skalli, O., Chou, Y.-H. & Goldman, R.D. (1992). Intermediate filaments: not so tough after all. Trends Cell Biol. 2, 308–12.CrossRefGoogle ScholarPubMed
Steinert, P.M. & Roop, D.R. (1988). Molecular and cellular biology of intermediate filaments. Annu. Rev. BioChem. 57, 593625.CrossRefGoogle ScholarPubMed
Swalla, B.J., Badgett, M.R. & Jeffery, W.R. (1991). Identification of a cytoskeletal protein localized in the myoplasm of ascidian eggs: localization is modified during anural development. Development 111, 425–36.CrossRefGoogle ScholarPubMed
Tang, P., Sharpe, C.R., Mohun, T.J. & Wylie, C.C. (1988). Vimentin expression in oocytes, eggs and early embryos of Xenopus laevis. Development 103, 279–87.CrossRefGoogle ScholarPubMed
Torpey, N.P., Heasman, J. & Wylie, C.C. (1992). Distinct distribution of vimentin and cytokeratin in Xenopus oocytes and early embryos. J. Cell Sci. 101, 151–60.CrossRefGoogle ScholarPubMed
Towbin, H., Staehlin, T. & Gordon, J. (1984). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4.CrossRefGoogle Scholar
Traub, P. & Shoeman, R.L. (1994). Intermediate filament proteins: cytoskeletal elements with gene–regulatory function? Int. Rev. Cytol. 154, 1103.CrossRefGoogle ScholarPubMed