Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T20:28:36.534Z Has data issue: false hasContentIssue false

Effects of testicular interstitial fluid on the proliferation of the mouse spermatogonial stem cells in vitro

Published online by Cambridge University Press:  14 May 2013

Peng Wang
Affiliation:
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
Yi Zheng
Affiliation:
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
Ying Li
Affiliation:
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
Hua Shang
Affiliation:
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
Guang-Xuan Li
Affiliation:
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
Jian-Hong Hu*
Affiliation:
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
Qing-Wang Li*
Affiliation:
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
*
All correspondence to: Jian-Hong Hu or Qing-Wang Li. College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China. Tel: +86 29 87092102. Fax: +86 29 87092164. e-mail: [email protected] or [email protected]
All correspondence to: Jian-Hong Hu or Qing-Wang Li. College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China. Tel: +86 29 87092102. Fax: +86 29 87092164. e-mail: [email protected] or [email protected]

Summary

Spermatogenesis is a process in adult male mammals supported by spermatogonial stem cells (SSCs). The cultivation of SSCs has potential value, for example for the treatment of male infertility or spermatogonial transplantation. Testicular interstitial fluid was added to culture medium to a final concentration of 5, 10, 20, 30 or 40%, in order to investigate its effects on proliferation of mouse SSCs in vitro, Alkaline phosphatase (AKP) assay, reverse transcription polymerase chain reaction (RT-PCR) analysis and indirect immunofluorescence of cells were performed to identify SSCs, and the proliferation rate and diameters of the SSCs colonies were measured. The results showed that the optimal addition of testicular interstitial fluid to culture medium was 30%. When medium supplemented with 30% testicular interstitial fluid was used to culture mouse SSCs, the optimum proliferation rate and diameter of the cell colonies were 72.53% and 249 μm, respectively, after 8 days in culture, values that were significant higher than those found for other groups (P < 0.05). In conclusion, proliferation of mouse SSCs could be promoted significantly by supplementation of the culture medium with 30% testicular interstitial fluid. More research is needed to evaluate and understand the precise physiological role of testicular interstitial fluid during cultivation of SSCs.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu Elhija, M., Lunenfeld, E., Schlatt, S. & Huleihel, M. (2012). Differentiation of murine male germ cells to spermatozoa in a soft agar culture system. Asian J. Androl. 14, 285–93.CrossRefGoogle Scholar
Araki, Y., Sato, T., Katagiri, K., Kubota, Y., Araki, Y. & Ogawa, T. (2010). Proliferation of mouse spermatogonial stem cells in microdrop culture. Biol. Reprod. 83, 951–7.CrossRefGoogle ScholarPubMed
Braunhut, S.J., Rufo, G.A., Ernisee, B.J., Zheng, W.X. & Bellve, A.R. (1990). The seminiferous growth factor induces proliferation of TM4 cells in serum-free medium. Biol. Reprod. 42, 639–48.CrossRefGoogle ScholarPubMed
Brinster, R.L. & Nagano, M. (1998). Spermatogonial stem cell transplantation, cryopreservation and culture. Semin. Cell Dev. Biol. 9, 401–9.CrossRefGoogle ScholarPubMed
Clermont, Y. (1972). Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol. Rev. 52, 198236.Google Scholar
de Rooij, D.G. (2006). Rapid expansion of the spermatogonial stem cell tool box. Proc. Natl. Acad. Sci. USA 103, 7939–40.Google Scholar
Falls, D.L. (2003). Neuregulins: functions, forms, and signaling strategies. Exp. Cell Res. 284, 1430.Google Scholar
Feng, L.X., Chen, Y.L., Dettin, L., Pera, R.A.R., Herr, J.C., Goldberg, E. & Dym, M. (2002). Generation and in vitro differentiation of a spermatogonial cell line. Science 297, 392–5.Google Scholar
Goel, S., Sugimoto, M., Minami, N., Yamada, M., Kume, S. & Imai, H. (2007). Identification, isolation, and in vitro culture of porcine gonocytes. Biol. Reprod. 77, 127–37.CrossRefGoogle ScholarPubMed
Griswold, M.D. (1995). Interactions between germ-cells and Sertoli cells in the testis. Biol. Reprod. 52, 211–6.Google Scholar
Guan, K., Nayernia, K., Maier, L.S., Wagner, S., Dressel, R., Lee, J.H., Nolte, J., Wolf, F., Li, M. & Engel, W. (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440, 1199–203.CrossRefGoogle ScholarPubMed
Hakovirta, H., Yan, W., Kaleva, M., Zhang, F.P., Vanttinen, K., Morris, P.L., Soder, M., Parvinen, M. & Toppari, J. (1999). Function of stem cell factor as a survival factor of spermatogonia and localization of messenger ribonucleic acid in the rat seminiferous epithelium. Endocrinology 140, 1492–8.CrossRefGoogle ScholarPubMed
Herrid, M., Davey, R.J. & Hill, J.R. (2007). Characterization of germ cells from pre-pubertal bull calves in preparation for germ cell transplantation. Cell Tissue Res. 330, 321–9.Google Scholar
Huckins, C. (1971). The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. Anat. Rec. 169, 533–57.Google Scholar
Jegou, B. (1993). The Sertoli germ-cell communication-network in mammals. Int Rev. Cytol 147, 2596.CrossRefGoogle ScholarPubMed
Jeong, D.K., McLean, D.J. & Griswold, M.D. (2003). Long-term culture and transplantation of murine testicular germ cells. J. Androl. 24, 661–9.Google Scholar
Kanatsu-Shinohara, M., Ogonuki, N., Inoue, K., Miki, H., Ogura, A., Toyokuni, S. & Shinohara, T. (2003). Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol. Reprod. 69, 612–6.CrossRefGoogle ScholarPubMed
Kanatsu-Shinohara, M., Inoue, K., Ogonuki, N., Miki, H., Yoshida, S., Toyokuni, S., Lee, J.Y., Ogura, A. & Shinohara, T. (2007). Leukemia inhibitory factor enhances formation of germ cell colonies in neonatal mouse testis culture. Biol. Reprod. 76, 5562.Google Scholar
Kubota, H., Avarbock, M.R. & Brinster, R.L. (2004). Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol. Reprod. 71, 722–31.Google Scholar
Lee, D.R., Parks, J.E., Lim, J.J., Yoon, H., Ko, J.J. & Kim, K.S. (2003). Regulation of the proliferation and differentiation of mouse spermatogonial stem cells by LIF/bFGF and FSH during in vitro culture. Fertil. Steril. 80, S279.Google Scholar
Li, X.C., Bolcun-Filas, E. & Schimenti, J.C. (2011). Genetic evidence that synaptonemal complex axial elements govern recombination pathway choice in mice. Genetics 189, 71U668.Google Scholar
Lim, J.J., Sung, S.Y., Kim, H.J., Song, S.H., Hong, J.Y., Yoon, T.K., Kim, J.K., Kim, K.S. & Lee, D.R. (2010). Long-term proliferation and characterization of human spermatogonial stem cells obtained from obstructive and non-obstructive azoospermia under exogenous feeder-free culture conditions. Cell Prolif. 43, 405–17.Google Scholar
Loh, Y.H., Wu, Q., Chew, J.L., Vega, V.B., Zhang, W.W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W. H., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., Wei, C. L., Ruan, Y. J., Lim, B. & Ng, H. H. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38, 431–40.Google Scholar
Manova, K., Huang, E.J., Angeles, M., De Leon, V., Sanchez, S., Pronovost, S.M., Besmer, P. & Bachvarova, R.F. (1993). The expression pattern of the c-kit ligand in gonads of mice supports a role for the c-kit receptor in oocyte growth and in proliferation of spermatogonia. Dev. Biol. 157, 8599.CrossRefGoogle ScholarPubMed
Morrison, S.J., Uchida, N. & Weissman, I.L. (1995). The biology of hematopoietic stem cells. Annu Rev. Cell Dev. Biol. 11, 3571.Google Scholar
Nagano, M., Avarbock, M.R., Leonida, E.B., Brinster, C.J. & Brinster, R.L. (1998). Culture of mouse spermatogonial stem cells. Tissue Cell 30, 389–97.Google Scholar
Nagano, M., Ryu, B.Y., Brinster, C.J., Avarbock, M.R. & Brinster, R.L. (2003). Maintenance of mouse male germ line stem cells in vitro . Biol. Reprod. 68, 2207–14.Google Scholar
Neri, T., Monti, M., Rebuzzini, P., Merico, V., Garagna, S., Redi, C.A. & Zuccotti, M. (2007). Mouse fibroblasts are reprogrammed to Oct-4 and Rex-1 gene expression and alkaline phosphatase activity by embryonic stem cell extracts. Cloning Stem Cells 9, 394406.CrossRefGoogle ScholarPubMed
Nolte, J., Michelmann, H.W., Wolf, M., Wulf, G., Nayernia, K., Meinhardt, A., Zechner, U. & Engel, W. (2010). PSCDGs of mouse multipotent adult germline stem cells can enter and progress through meiosis to form haploid male germ cells in vitro . Differentiation 80, 184–94.CrossRefGoogle ScholarPubMed
Oatley, J.M., Avarbock, M.R. & Brinster, R.L. (2007). Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on src family kinase signaling. J. Biol. Chem. 282, 25842–51.Google Scholar
Packer, A.I., Besmer, P. & Bachvarova, R.F. (1995). Kit-ligand mediates survival of type-a spermatogonia and dividing spermatocytes in postnatal mouse testes. Mol. Reprod. Dev. 42, 303–10.CrossRefGoogle ScholarPubMed
Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H.G., Ince, T.A., Lerou, P.H., Lensch, M.W. & Daley, G.Q. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–6.CrossRefGoogle ScholarPubMed
Parvinen, M., Vihko, K.K. & Toppari, J. (1986). Cell interactions during the seminiferous epithelial cycle. Int. Rev. Cytol. 104, 115–51.Google Scholar
Parvinen, M., Soder, O., Mali, P., Froysa, B. & Ritzen, E.M. (1991). In vitro stimulation of stage-specific deoxyribonucleic acid synthesis in rat seminiferous tubule segments by interleukin-1 alpha. Endocrinology 129, 1614–20.CrossRefGoogle ScholarPubMed
Petersen, C., Boitani, C., Froysa, B. & Soder, O. (2002). Interleukin-1 is a potent growth factor for immature rat Sertoli cells. Mol. Cell Endocrinol. 186, 3747.Google Scholar
Pollanen, P., Soder, O. & Parvinen, M. (1989). Interleukin-1 alpha stimulation of spermatogonial proliferation in vivo .Reprod. Fertil. Dev. 1, 85–7.Google Scholar
Rossi, P., Dolci, S., Albanesi, C., Grimaldi, P., Ricca, R. & Geremia, R. (1993). Follicle-stimulating hormone induction of steel factor (SLF) mRNA in mouse Sertoli cells and stimulation of DNA synthesis in spermatogonia by soluble SLF. Dev. Biol. 155, 6874.CrossRefGoogle ScholarPubMed
Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 725.Google Scholar
Sette, C., Dolci, S., Geremia, R. & Rossi, P. (2000). The role of stem cell factor and of alternative c-kit gene products in the establishment, maintenance and function of germ cells. Int. J. Dev. Biol. 44, 599608.Google Scholar
Shinohara, T., Avarbock, M.R. & Brinster, R.L. (1999). Beta(1)- and alpha(6)-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA 96, 55045509.CrossRefGoogle Scholar
Skinner, M.K. (1991). Cell-cell interactions in the testis. Endocr. Rev. 12, 4577.Google Scholar
Soder, O., Bang, P., Wahab, A. & Parvinen, M. (1992). Insulin-like growth factors selectively stimulate spermatogonial, but not meiotic, deoxyribonucleic acid synthesis during rat spermatogenesis. Endocrinology 131, 2344–50.Google Scholar
Spradling, A., Drummond-Barbosa, D. & Kai, T. (2001). Stem cells find their niche. Nature 414, 98104.Google Scholar
Svechnikov, K.V., Sultana, T. & Soder, O. (2001). Age-dependent stimulation of Leydig cell steroidogenesis by interleukin-1 isoforms. Mol. Cell Endocrinol. 182, 193201.CrossRefGoogle ScholarPubMed
Tajima, Y., Onoue, H., Kitamura, Y. & Nishimune, Y. (1991). Biologically active kit ligand growth factor is produced by mouse Sertoli cells and is defective in Sld mutant mice. Development 113, 10311035.Google Scholar
Tegelenbosch, R.A.J. & Derooij, D.G. (1993). A quantitative study of spermatogonial multiplication and stem-cell renewal in the C3H/101 F1-hybrid mouse. Mutat. Res. 290, 193200.CrossRefGoogle ScholarPubMed
Thellin, O., Zorzi, W., Lakaye, B., De Borman, B., Coumans, B., Hennen, G., Grisar, T., Igout, A. & Heinen, E. (1999). Housekeeping genes as internal standards: use and limits. J. Biotechnol. 75, 291–5.CrossRefGoogle Scholar
Uchida, N., Fleming, W.H., Alpern, E.J. & Weissman, I.L. (1993). Heterogeneity of hematopoietic stem-cells. Curr. Opin. Immunol. 5, 177–84.Google Scholar
Vincent, S., Segretain, D., Nishikawa, S., Nishikawa, S.I., Sage, J., Cuzin, F. & Rassoulzadegan, M. (1998). Stage-specific expression of the Kit receptor and its ligand (KL) during male gametogenesis in the mouse: a Kit-KL interaction critical for meiosis. Development 125, 4585–93.Google Scholar
Yoshida, S., Takakura, A., Ohbo, K., Abe, K., Wakabayashi, J., Yamamoto, M., Suda, T. & Nabeshima, Y. (2004). Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis. Dev. Biol. 269, 447–58.Google Scholar
Yoshinaga, K., Nishikawa, S., Ogawa, M., Hayashi, S., Kunisada, T. & Fujimoto, T. (1991). Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 113, 689–99.Google Scholar