Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-02T19:58:49.738Z Has data issue: false hasContentIssue false

Bovine blastocyst development after follicle-stimulating hormone and platelet-derived growth factor treatment for oocyte maturation in vitro

Published online by Cambridge University Press:  26 September 2008

Kathleen M. Harper
Affiliation:
College of Veterinary Medicine, University of Georgia, Athens, Georgia, U.S.A.
Benjamin G. Brackett*
Affiliation:
College of Veterinary Medicine, University of Georgia, Athens, Georgia, U.S.A.
*
Dr B.G. Brackett, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7389, USA. Telephone: (706)542-3014. Fax: (706)542-3015.

Summary

Bovine embryonic viability after in vitro fertilisation (IVF) was affected by addition of platelet-derived growth factor (PDGF) or growth factor combinations to gonadotrophin-supplemented serum-free medium for in vitro maturation (IVM). Thus, 0.1, 1.0 or 10.0 ng PDGF/ml combined with 500 ng follicle-stimulating hormone (FSH)/ml enhanced oocyte maturation as reflected by greater proportions (p < 0.05) of matured and inseminated oocytes developing to blastocysts in vitro than were afforded by PDGF alone, i.e. 32.4%, 28.2% and 31.0% respectively vs. 11.4%, 13.5% and 8.6% respectively. By contrast, luteinising hormone (LH, 500 ng/ml) combined with the same concentrations of PDGF did not increase the proportions of oocytes developing to blastocysts (16.2%, 12.5% and 16.9%). Epidermal growth factor (EGF) + insulin-like growth factor-I (IGF-I) with or without PDGF when added to low concentrations of FSH or LH did not significantly improve cleavage or morula development. Significant improvement (p & 0.05) in blastocyst formation was seen when FSH was supplemented with either EGF (38.0%) or EGF + IGF-I + PDGF (40.7%) compared with FSH alone (27.4%) or FSH + LH (24.3%), but no improvement followed FSH + EGF + IGF-I (33.6%) or FSH + LH + EGF + IGF-I + PDGF (29.2%) treatments for IVM. Results revealed a positive influence on blastocyst development of FSH and PDGF or EGF ± PDGF during IVM and suggest the possibility of a concerted action of gonadotrophins with growth factors in physiological (functional) oocyte maturation.

Type
Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armelin, H.A., & Armelin, M.C.S. (1987). The interaction of peptide growth factors and oncogenes. In Oncogenes, Genes, and Growth Factors, ed. Guroff, G., pp. 2530. New York: Wiley.Google Scholar
Bavister, B.D., Leibfried-Rutledge, M.L. & Leiberman, G. (1983). Development of preimplantation embryos of the golden hamster in a defined culture medium. Biol. Reprod. 28, 235–47.CrossRefGoogle Scholar
Berridge, M.J., Heslop, J.P., Irvine, R.F. & Brown, K.D.. (1984). Inositol triphosphate formation and calcium mobilisation in Swiss 3T3 cells in response to platelet-derived growth factor. Biochern. J. 222, 195201.CrossRefGoogle Scholar
Bowen-Pope, D.F., Dicorleto, P.E. & Ross, R. (1983). Inter actions between the receptors for platelet-derived growth factor and epidermal growth factor. J. Cell Biol. 96, 679–83.CrossRefGoogle Scholar
Brackett, B.G., Younis, A.I. & Fayrer-Hosken, R.A.. (1989). Enhanced viability after in vitro fertilisation of bovine oocytes matured in vitro with high concentrations of luteinising hormone. Fertil. Steril. 52, 319–24.CrossRefGoogle Scholar
Carson, R.S., Zhang, Z., Hutchinson, L.A., Herrington, A.C., & Findlay, J.K. (1989). Growth factors in ovarian function. J. Reprod. Pert. 85, 735–46.CrossRefGoogle ScholarPubMed
Chabot, J.G., St-Arnaud, R., Walker, P. & Pelletier, G.. (1986). Distribution of epidermal growth factor receptors in the rat ovary. Mol. Cell Endocrinol. 44, 99108.CrossRefGoogle ScholarPubMed
Collins, M.K.L., Sinnett-Smith, J.W. & Rozengurt, E.. (1983). Platelet-derived growth factor treatment decreases the affinity of the epidermal growth factor receptors of Swiss 3T3 cells. J. Biol. Chem. 258, 11689–93.CrossRefGoogle ScholarPubMed
Coskun, S., Sanbuissho, A., Lin, Y.C. & Rikihisa, Y.. (1991). Fertilisability and subsequent developmental ability of bovine oocytes matured in medium containing epidermal growth factor (ECF). Theriogenology 36, 485–94.CrossRefGoogle Scholar
Das, K., Tagatz, G.E., Stout, L.E., Phipps, W.R., Hensleigh, H.C. & Leung, B.S. (1991). Direct positive effect of epidermal growth factor on the cytoplasmic maturation of mouse and human oocytes. Fert. Steril. 55, 1000–4.CrossRefGoogle ScholarPubMed
Dekel, N. & Sherizly, I. (1985). Epidermal growth factor induces maturation of rat follicle-enclosed oocytes. Endocrinology 116, 406–9.CrossRefGoogle ScholarPubMed
Dekel, N., Galiani, D. & Beers, W.H.. (1988). Induction of maturation in follicle-enclosed oocytes: the response to gonadotrophins at different stages of follicular development. Biol. Reprod. 38, 517–21.CrossRefGoogle ScholarPubMed
Downs, S.M. (1989). Specificity of epidermal growth factor action on maturation of the murine oocyte and cumulus oophorus in vitro. Biol. Reprod. 41, 371–9.CrossRefGoogle ScholarPubMed
Downs, S.M., Daniel, S.A.J. & Eppig, J.J. (1988). Induction of maturation in cumulus cell-enclosed mouse oocytes by follicle-stimulating hormone and epidermal growth factor: evidence for a positive stimulus of somatic cell origin. J. Exp. Zool. 245, 8696.CrossRefGoogle ScholarPubMed
Feng, P., Knecht, M. & Catt, K.J. (1987). Hormonal control of epidermal growth factor receptors by gonadotrophins during granulosa cell differentiation. Endocrinology 120, 1121–6.CrossRefGoogle ScholarPubMed
Feng, P., Catt, K.J. & Knecht, M. (1988). Transforming Growth Factor-beta stimulates meiotic maturation of the rat oocyte. Endocrinology 122, 181–6.CrossRefGoogle ScholarPubMed
First, N.L., Leibfried-Rutledge, M.L. & Sirard, M.A. (1988). Cytoplasmic control of oocyte maturation and species differences in the development of maturational competence. Prog. Clin. Biol. Res. 267, 1–46.Google ScholarPubMed
Fukui, Y. & Ono, H. (1989). Effects of sera, hormones and granulosa cells added to culture medium for in-vitro maturation, fertilisation, cleavage and development of bovine oocytes. J. Reprod. Pert. 86, 501–6.CrossRefGoogle ScholarPubMed
Fukui, Y., Fukushima, M., Terawaki, Y. & Ono, H. (1982). Effect of gonadotrophins, steroids and culture media on bovine oocyte maturation in vitro. Theriogenology 18, 161–75.CrossRefGoogle ScholarPubMed
Hammond, J.M., Baranao, J.L.S., Skaleris, D., Knight, A.B., Romanus, J.A. & Rechler, M.M. (1985). Production of insulin-like growth factors by ovarian granulosa cells. Endocrinology 117, 2553–5.CrossRefGoogle ScholarPubMed
Hammond, J.M., Hsu, C-J., Mondschein, J.S. & Canning, S.F. (1988). Paracrine and autocrine functions of growth factors in the ovarian follicle. J. Anim. Sci. 66 (Suppl 2), 2131.Google Scholar
Harper, K.M. & Brackett, B.G.. (1991). Effect of gonadotrophins with epidermal growth factor (EGF) during maturation on embryo viability in vitro. Biol. Reprod. 44 (Suppl 1),121.Google Scholar
Harper, K.M. & Brackett, B.G. (1992 a). Bovine blastocyst development after in vitro maturation in a defined medium with epidermal growth factor and low concentrations of gonadotrophins. Biol. Reprod. Accepted.Google Scholar
Harper, K.M. & Brackett, B.G.. (1992 b). Enhanced bovine oocyte quality after in vitro maturation (IVM) with insulin like growth factor-I (IGF-I) and gonadotrophins. Biol. Reprod. 46 (Suppl 1), 67.Google Scholar
Hill, D. (1989). Growth factors and their cellular action. J. Reprod. Fertil. 85, 723–34.CrossRefGoogle Scholar
Hofmann, G.E., Scott, R.I., Bryzski, R.G. & Jones, H.W.. (1990). Immunoreactive epidermal growth factor con centrations in follicular fluid obtained from in vitro fertilisation. Fertil. Steril. 54, 303–7.CrossRefGoogle Scholar
Hunter, A.G. & Moor, R.M. (1987). Stage-dependent effects of inhibiting ribonucleic acids and protein synthesis on meiotic maturation of bovine oocytes in vitro. J. Dairy Sci. 70, 1646–51.CrossRefGoogle ScholarPubMed
Hsu, C-J., Holmes, S.D. & Hammond, J.M. (1987). Ovarian epidermal growth factor-like activity. Concentrations in porcine follicular fluid during follicular enlargement. Biochem. Biophys. Res. Comm. 147, 242–7.CrossRefGoogle ScholarPubMed
Jagiello, G., Ducayen, M., Miller, W., Graffeo, J. & Fang, J.S. (1975). Stimulation and inhibition with LH and other hormones of female mammalian meiosis in vitro. J. Reprod. Fert. 43, 922.CrossRefGoogle ScholarPubMed
Kastrop, P.M.M., Bevers, M.M., Destree, O.H.J. & Kruip, T.A.M.. (1990 b). Changes in protein synthesis and phosphorylation patterns during bovine oocyte maturation in vitro. J. Reprod. Fert. 90, 305–10.CrossRefGoogle ScholarPubMed
Kastrop, P.M.M., Bevers, M.M., Destree, O.H.J. & Kruip, T.A.M.. (1990 b). Analysis of protein synthesis in morpho logically classified bovine follicular oocytes before and after maturation in vitro. Mol. Reprod. Dev. 26, 222–6.CrossRefGoogle Scholar
Kastrop, P.M.M., Hulshof, S.C.J., Bevers, M.M., Destree, O.H.J. & Kruip, T.A.M. (1991). The effects of alphaamanitin and cycloheximide on nuclear progression, protein synthesis, and phosphorylation during bovine oocyte maturation in vitro. Mol. Repord. Develop. 28, 249–54.CrossRefGoogle ScholarPubMed
Kelly, K., Cochran, B.H., Stiles, C.D. & Leder, P. (1983). Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35, 603–10.CrossRefGoogle ScholarPubMed
Knecht, M. & Catt, K.J.. (1983). Modulation of cAMP- mediated differentiation in ovarian granulosa cells by epidermal growth factor and platelet-derived growth factor. J. Biol. Chem. 258, 2789–94.CrossRefGoogle ScholarPubMed
Knecht, M., Feng, P. & Catt, K.J. (1989). Transforming growth factor-beta: autocrine, paracrine, and endocrine effects in ovarian cells. Sem. Reprod. Endocrinol. 7, 1220.CrossRefGoogle Scholar
Kruijer, W., Cooper, J.A., Hunter, T. & Verma, I.M. (1984). Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature 312, 711–16.CrossRefGoogle ScholarPubMed
Lorenzo, P., Illera, M.J., Sanchez, J., Silvan, C., & Illera, J.C. (1992). The effect of EGF on cumulus expansion and bovine oocyte maturation in vitro. Theriogenology 37, 250.CrossRefGoogle Scholar
Massague, J. (1985). Transforming growth factor-1β modulates the high-affinity receptors for epidermal growth factor and transforming growth factor-α. J. Cell Biol. 100, 1508–14.CrossRefGoogle Scholar
Mondschein, J.S. & Schomberg, D.W. (1981). Platelet-derived growth factor enhances granulosa cell luteinising hormone receptor induction by follicle-stimulating hormone and serum. Endocrinology 109, 325–7.CrossRefGoogle ScholarPubMed
Mondschein, J.S. & Schomberg, D.W. (1984). Effects of partially and more highly purified platelet-derived growth factor preparations on luteinising hormone receptor induction in granulosa cell cultures. Biol. Reprod. 30, 603–8.CrossRefGoogle ScholarPubMed
Moor, R.M. (1988). Regulation of the meiotic cycle in oocytes of domestic mammals. Ann. NY Acad. Sci. 541, 248–58.CrossRefGoogle ScholarPubMed
Moor, R.M. & Crosby, I.M.. (1986). Protein requirements for germinal vesicle breakdown in ovine oocytes. J. Embryol. exp. Morph. 94, 207220.Google ScholarPubMed
Moor, R.M. & Warnes, G.M. (1979). Regulation of meiosis in mammalian oocytes. Brit. Med. Bull. 35(2), 99103.CrossRefGoogle ScholarPubMed
Moor, R.M., Osborn, J.C., Cran, D.G & Walters, D.E. (1981). Selective effect of gonadotrophins on cell coupling, nuclear maturation and protein synthesis in mammalian oocytes. J. Embryol. Exp. Morphol. 61, 347–65.Google ScholarPubMed
Motlik, J.. (1989). Cytoplasmic aspects of oocyte growth and maturation in mammals. J. Reprod. Fert. 38 (Suppl), 1725.Google ScholarPubMed
Motlik, J. & Fulka, J. (1986). Factors affecting meiotic competence in pig oocytes. Theriogenology 25, 8796.CrossRefGoogle Scholar
Osborn, J.C. & Moor, R.M. (1983) The role of steroid signals in the maturation of mammalian oocytes. J. Steroid. Biochem. 19, 133–7.CrossRefGoogle ScholarPubMed
Ozon, R., Mulner, O., Boyer, J. & Belle, R. (1987). Role of protein phosphorylation in Xenopus oocyte meiotic maturation. In Molecular Regulation of Nuclear Events in Mitosis and Meiosis, ed. Schlegel, R.A., Halleck, M.S. & Rao, P.N., pp. 111–30. Orlando, Fl: Academic Press.CrossRefGoogle Scholar
Pardee, A.B. (1989). G1 events and regulation of cell proliferation. Science 246, 603–8.CrossRefGoogle ScholarPubMed
Parrish, J.J., Susko-Parrish, J.L., Leibfried-Rutledge, M.L., Critser, E.S., Eyestone, W.H. & First, N.L. (1986). Bovine in vitro fertilisation with frozen-thawed semen. Theriogenology 25, 591600.CrossRefGoogle ScholarPubMed
Ramasharma, K., Cabrera, C.M. & Li, C.H. (1986). Identification of insulin-like growth factor-II in human seminal and follicular fluids. Biochem. Biophys. Res. Commun. 140, 536–42.CrossRefGoogle ScholarPubMed
Rappolee, D.A., Breener, C.A., Schultz, R., Mark, D. & Werb, Z. (1988). Developmental expression of PDGF, TCF-α, and TGF-β genes in preimplantation mouse embryos. Science 241, 1823–5.CrossRefGoogle Scholar
Rose, T.A. & Bavister, B.D.. (1992). Effect of oocyte maturation medium on in vitro development of in vitro fertilised bovine embryos. Mol. Reprod. Dev. 31, 72–7.CrossRefGoogle Scholar
Ross, R., Raines, E.W. & Bowen-Pope, D.F. (1986). The biology of platelet-derived growth factor. Cell 46, 155–69.CrossRefGoogle ScholarPubMed
Rozengurt, E. (1983). Growth factors, cell proliferation and cancer: an overview. Mol. Biol. Med. 1, 169–81.Google ScholarPubMed
Rozengurt, E. (1986). Early signals in the mitogenic response. Science 234, 161–6.CrossRefGoogle ScholarPubMed
Rozengurt, E., Collins, M., Brown, K.D. & Pettican, P. (1982). Inhibition of epidermal growth factor binding to mouse cultured cells by fibroblast-derived growth factor. Evidence for an indirect mechanism. J. Biol. Chem. 257, 3680–6.CrossRefGoogle ScholarPubMed
Roy, S.K. & Greenwald, G.S. (1990). Immunohistochemical localisation of epidermal growth factor-like activity in the hamster ovary with a polyclonal antibody. Endocrinology 126, 1309–17.CrossRefGoogle ScholarPubMed
Roy, S.K. & Greenwald, G.S. (1991). In vitro effects of epidermal growth factor, insulin-like growth factor-I, fibroblast growth factor, and follicle-stimulating hormone on hamster follicular deoxyribonucleic acid synthesis and steroidogenesis. Biol. Reprod. 44, 889896.CrossRefGoogle ScholarPubMed
Saeki, K., Hoshi, M., Leibfried-Rutledge, M.L. & First, N.L. (1990). In vitro fertilisation and development of bovine oocytes matured with commercially available follicel stimulating hormone. Theriogenology 34, 1035–9.CrossRefGoogle Scholar
Sanbuissho, A. & Threlfall, W.R. (1989). The effects of estrous cow serum on the in vitro maturation and fertilisation of the bovine follicular oocyte. Theriogenology 31, 693–9.CrossRefGoogle ScholarPubMed
Schellander, K., Fuhrer, F., Brackett, B.G., Korb, H. & Schleger, W. (1990). in vitro fertilisation and cleavage of bovine oocytes matured in medium supplemented with estrous cow serum. Theriogenology 33, 477–85.CrossRefGoogle ScholarPubMed
Shalgi, R. (1984). Developmental capacity of rat embryos produced by in vivo or in vitro fertilisation. Gamete Res. 10, 7782.CrossRefGoogle Scholar
Sirard, M.A., Florman, H.M., Leibfried-Rutledge, M.L., Barnes, F.L., Sims, M.L. & First, N.L.. (1989). Timing of nuclear progression and protein synthesis necessary for meiotic maturation of bovine oocytes. Biol. Reprod. 40, 1257–63.CrossRefGoogle ScholarPubMed
Skinner, M.K., Lobb, D. & Dorrington, J.H.. (1987). Ovarianthecal/interstitial cells produce an epidermal growth factor-like substance. Endocrinology 121, 1892–9.CrossRefGoogle ScholarPubMed
Svalander, P.C., Wikland, M., Holmes, P.V., Gemzell-Danielsson, K., Olovsson, M. & Bygdeman, M.. (1991). Platelet-derived growth factor is detected in human blastocyst culture medium but not in human follicular fluid – a preliminary report. Fertil. Steril. 56, 367–9.CrossRefGoogle Scholar
Takagi, Y., Mori, K., Tomizawa, M., Takahashi, T., Sugawara, S. & Masaki, J. (1991). Development of bovine oocytes matured, fertilised and cultured in a serum-free, chemically defined medium. Theriogenology. 35, 1197–207.CrossRefGoogle Scholar
Thibault, C. (1977). Are follicular maturation and oocyte maturation independent processes? J. Reprod. Fert. 51, 115.CrossRefGoogle ScholarPubMed
Thibault, C., Gerard, M. & Menezo, Y. (1975). Preovulatory and ovulatory mechanisms in oocyte maturation. J. Reprod. Fert. 45, 605–10.CrossRefGoogle ScholarPubMed
Williams, L.T. (1989). Signal transduction by the platelet-derived growth factor receptor. Science 243, 1564–70.CrossRefGoogle ScholarPubMed
Younis, A.I. & Brackett, B.C. (1992). Thyroid stimulating hormone enhancement of bovine oocyte maturation in vitro. Mol. Reprod. Dev. 31, 144–51.CrossRefGoogle ScholarPubMed
Younis, A.I., Brackett, B.G. & Fayrer-Hosken, R.A. (1989). Influence of serum and hormones on bovine oocyte maturation and fertilisation in vitro. Gamete Res. 23, 189201.CrossRefGoogle Scholar
Zuelke, K.A. & Brackett, B.G. (1990). Luteinising hormone- enhanced in vitro maturation of bovine oocytes with and without protein supplementation. Biol. Reprod. 43, 784–7.CrossRefGoogle ScholarPubMed