Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T13:40:56.389Z Has data issue: false hasContentIssue false

An additional medium renewal of D4 embryo culture improves the concordance of noninvasive chromosome screening with trophectoderm biopsy

Published online by Cambridge University Press:  22 September 2022

Hong-Xing Li
Affiliation:
The First School of Clinical Medicine, Lanzhou University, Lanzhou730000, China Reproductive Medical Center, the First Hospital of Lanzhou University, Lanzhou730000, China Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, Lanzhou730000, China
Yan Pang
Affiliation:
PET-CT Center of Gansu Provincial Hospital, Lanzhou730000, China
Xue-Hong Zhang
Affiliation:
The First School of Clinical Medicine, Lanzhou University, Lanzhou730000, China
Di Cao
Affiliation:
The First School of Clinical Medicine, Lanzhou University, Lanzhou730000, China
Xiao-Ling Ma*
Affiliation:
The First School of Clinical Medicine, Lanzhou University, Lanzhou730000, China Reproductive Medical Center, the First Hospital of Lanzhou University, Lanzhou730000, China Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, Lanzhou730000, China
*
Author for correspondence: Xiao-Ling Ma. Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, 730000, China. E-mail: [email protected]

Summary

Our research question was to evaluate the chromosome concordance of trophectoderm (TE) biopsy with noninvasive chromosome screening (NICS) using embryo culture medium renewed twice on Day 3 (D3) and Day 4 (D4). In this study, we evaluated 64 cycles with 223 biopsied blastocysts. These were categorized into two groups based on replacing embryo culture medium on D3 (control group) or on D3 and D4 (experimental group). The fundamental characteristics and main outcomes were compared. The concordance rates of NICS results with TE biopsy were determined according to next generation sequencing results. In total, 103 experimental and 120 control embryo cultures were collected, and the euploid status was analyzed using NICS technology. The overall concordance rates with TE biopsy of the experimental and control groups were 0.86 and 0.75, respectively. Statistically significant difference was found between the two groups. An additional medium renewal of the D4 embryo culture can improve the concordance of NICS with TE biopsy.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbash-Hazan, S., Frumkin, T., Malcov, M., Yaron, Y., Cohen, T., Azem, F., Amit, A. and Ben-Yosef, D. (2009). Preimplantation aneuploid embryos undergo self-correction in correlation with their developmental potential. Fertility and Sterility, 92(3), 890896. doi: 10.1016/j.fertnstert.2008.07.1761 CrossRefGoogle ScholarPubMed
Chen, J., Jia, L., Li, T., Guo, Y., He, S., Zhang, Z., Su, W., Zhang, S. and Fang, C. (2020). Diagnostic efficiency of blastocyst culture medium in noninvasive preimplantation genetic testing. F&S Reports, 2(1), 8894. doi: 10.1016/j.xfre.2020.09.004 Google ScholarPubMed
Dreesen, J., Destouni, A., Kourlaba, G., Degn, B., Mette, W. C., Carvalho, F., Moutou, C., SenGupta, S., Dhanjal, S., Renwick, P., Davies, S., Kanavakis, E., Harton, G. and Traeger-Synodinos, J. (2014). Evaluation of PCR-based preimplantation genetic diagnosis applied to monogenic diseases: A collaborative ESHRE PGD consortium study. European Journal of Human Genetics, 22(8), 10121018. doi: 10.1038/ejhg.2013.277 CrossRefGoogle ScholarPubMed
Fang, R., Yang, W., Zhao, X., Xiong, F., Guo, C., Xiao, J., Chen, L., Song, X., Wang, H., Chen, J., Xiao, X., Yao, B. and Cai, L. Y. (2019). Chromosome screening using culture medium of embryos fertilized in vitro: A pilot clinical study. Journal of Translational Medicine, 17(1), 73. doi: 10.1186/s12967-019-1827-1 CrossRefGoogle Scholar
Farra, C., Choucair, F. and Awwad, J. (2018). Non-invasive pre-implantation genetic testing of human embryos: An emerging concept. Human Reproduction, 33(12), 21622167. doi: 10.1093/humrep/dey314 CrossRefGoogle ScholarPubMed
Ferrick, L., Lee, Y. S. L. and Gardner, D. K. (2020). Metabolic activity of human blastocysts correlates with their morphokinetics, morphological grade, KIDScore and artificial intelligence ranking. Human Reproduction, 35(9), 20042016. doi: 10.1093/humrep/deaa181 CrossRefGoogle ScholarPubMed
Franco, J. G. Jr. (2019). New perspectives with the use of noninvasive chromosome screening (NICS) in ART. JBRA Assisted Reproduction, 23(4), 321322. doi: 10.5935/1518-0557.20190071 Google Scholar
Hammond, E. R., McGillivray, B. C., Wicker, S. M., Peek, J. C., Shelling, A. N., Stone, P., Chamley, L. W. and Cree, L. M. (2017). Characterizing nuclear and mitochondrial DNA in spent embryo culture media: Genetic contamination identified. Fertility and Sterility, 107(1), 220228.e5. doi: 10.1016/j.fertnstert.2016.10.015 CrossRefGoogle ScholarPubMed
Huang, L., Bogale, B., Tang, Y., Lu, S., Xie, X. S. and Racowsky, C. (2019). Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. Proceedings of the National Academy of Sciences of the United States of America, 116(28), 1410514112. doi: 10.1073/pnas.1907472116 CrossRefGoogle ScholarPubMed
Jiao, J., Shi, B., Sagnelli, M., Yang, D., Yao, Y., Li, W., Shao, L., Lu, S., Li, D. and Wang, X. (2019). Minimally invasive preimplantation genetic testing using blastocyst culture medium. Human Reproduction, 34(7), 13691379. doi: 10.1093/humrep/dez075 CrossRefGoogle ScholarPubMed
Kemper, J. M., Vollenhoven, B. J. and Talmor, A. J. (2019). Preimplantation genetic testing for aneuploidy: A review. Obstetrical and Gynecological Survey, 74(12), 727737. doi: 10.1097/OGX.0000000000000737 CrossRefGoogle ScholarPubMed
Kuznyetsov, V., Madjunkova, S., Antes, R., Abramov, R., Motamedi, G., Ibarrientos, Z. and Librach, C. (2018). Evaluation of a novel non-invasive preimplantation genetic screening approach. PLoS ONE, 13(5), e0197262. doi: 10.1371/journal.pone.0197262 CrossRefGoogle ScholarPubMed
Li, H. X., Xu, X. J. and Liu, L. (2021). A new day 4 grading system to assess embryo quality in frozen embryo transfer cycles. Reproductive Sciences, 28(5), 13331338. doi: 10.1007/s43032-020-00389-y CrossRefGoogle ScholarPubMed
Magli, M. C., Pomante, A., Cafueri, G., Valerio, M., Crippa, A., Ferraretti, A. P. and Gianaroli, L. (2016). Preimplantation genetic testing: Polar bodies, blastomeres, trophectoderm cells, or blastocoelic fluid? Fertility and Sterility, 105(3), 676683.e5. doi: 10.1016/j.fertnstert.2015.11.018 CrossRefGoogle ScholarPubMed
Marin, D., Xu, J. and Treff, N. R. (2021). Preimplantation genetic testing for aneuploidy: A review of published blastocyst reanalysis concordance data. Prenatal Diagnosis, 41(5), 545553. doi: 10.1002/pd.5828 CrossRefGoogle ScholarPubMed
Schoolcraft, W. B., Fragouli, E., Stevens, J., Munne, S., Katz-Jaffe, M. G. and Wells, D. (2010). Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertility and Sterility, 94(5), 17001706. doi: 10.1016/j.fertnstert.2009.10.015 CrossRefGoogle ScholarPubMed
Shamonki, M. I., Jin, H., Haimowitz, Z. and Liu, L. (2016). Proof of concept: Preimplantation genetic screening without embryo biopsy through analysis of cell-free DNA in spent embryo culture media. Fertility and Sterility, 106(6), 13121318. doi: 10.1016/j.fertnstert.2016.07.1112 CrossRefGoogle ScholarPubMed
Takeuchi, K. (2021). Pre-implantation genetic testing: Past, present, future. Reproductive Medicine and Biology, 20(1), 2740. doi: 10.1002/rmb2.12352 CrossRefGoogle ScholarPubMed
Tobler, K. J., Zhao, Y., Ross, R., Benner, A. T., Xu, X., Du, L., Broman, K., Thrift, K., Brezina, P. R. and Kearns, W. G. (2015). Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis. Fertility and Sterility, 104(2), 418425. doi: 10.1016/j.fertnstert.2015.04.028 CrossRefGoogle ScholarPubMed
Vagnini, L. D., Petersen, C. G., Renzi, A., Dieamant, F., Oliveira, J. B. A., Oliani, A. H., Canas, M. C. T., Nakano, R., Almodin, C. G., Marcondes, C., Ceschin, A., Amaral, A., Soares, J. B., Lopes, J., Franco, A. C. and Franco, J. G., Jr. (2020). Relationship between age and blastocyst chromosomal ploidy analyzed by noninvasive preimplantation genetic testing for aneuploidies (niPGT-A). JBRA Assisted Reproduction, 24(4), 395399. doi: 10.5935/1518-0557.20200061 Google Scholar
Wu, Y., Lv, Z., Yang, Y., Dong, G., Yu, Y., Cui, Y., Tong, M., Wang, L., Zhou, Z., Zhu, H., Zhou, Q. and Sha, J. (2014). Blastomere biopsy influences epigenetic reprogramming during early embryo development, which impacts neural development and function in resulting mice. Cellular and Molecular Life Sciences, 71(9), 17611774. doi: 10.1007/s00018-013-1466-2 CrossRefGoogle ScholarPubMed
Xu, J., Fang, R., Chen, L., Chen, D., Xiao, J. P., Yang, W., Wang, H., Song, X., Ma, T., Bo, S., Shi, C., Ren, J., Huang, L., Cai, L. Y., Yao, B., Xie, X. S. and Lu, S. (2016). Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proceedings of the National Academy of Sciences of the United States of America, 113(42), 1190711912. doi: 10.1073/pnas.1613294113 CrossRefGoogle ScholarPubMed
Zaninovic, N. and Rosenwaks, Z. (2020). Artificial intelligence in human in vitro fertilization and embryology. Fertility and Sterility, 114(5), 914920. doi: 10.1016/j.fertnstert.2020.09.157 CrossRefGoogle Scholar
Zhao, H. C., Zhao, Y., Li, M., Yan, J., Li, L., Li, R., Liu, P., Yu, Y. and Qiao, J. (2013). Aberrant epigenetic modification in murine brain tissues of offspring from preimplantation genetic diagnosis blastomere biopsies. Biology of Reproduction, 89(5), 117. doi: 10.1095/biolreprod.113.109926 CrossRefGoogle ScholarPubMed

Li et al. supplementary material

Li et al. supplementary material 1

Download Li et al. supplementary material(Video)
Video 11.6 MB
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material 2

Download Li et al. supplementary material(File)
File 14.8 KB