Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T07:27:06.948Z Has data issue: false hasContentIssue false

The True Metabolizable Energy Bioassay as a Method for Estimating Bioavailable Energy in Poultry Feedingstuffs

Published online by Cambridge University Press:  18 September 2007

I. R. Sibbald
Affiliation:
Animal Research Centre, Agriculture Canada, Ottawa, Ontario, CanadaK1A OC6
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bilgili, S. F., Arscott, G. H. and Kellems, R. (1982). True metabolizable energy values of hydrolyzed pacific whiting (Merluccius productus) as determined with gelatin capsules in roosters. Nutrition Reports International 25(4): 639.Google Scholar
Chami, D. B., Vohra, P. and Kratzer, F. H. (1980). Evaluation of a method for determination of true metabolizable energy of feed ingredients. Poultry Science 59(3): 569.CrossRefGoogle Scholar
Dale, N. M. and Fuller, H. L. (1980). Additivity of true metabolizable energy values as measured with roosters, broiler chicks and poults. Poultry Science 59(8): 1941.CrossRefGoogle ScholarPubMed
Dale, N. M. and Fuller, H. L. (1981). The use of true metabolizable energy (TME) in formulating poultry rations. Pages 50–57 in Proceedings of the Georgia Nutrition Conference,University of Georgia, Athens, GA.Google Scholar
Dale, N. M. and Fuller, H. L. (1982). Endogenous energy losses of fed versus fasted roosters. Poultry Science 61(5): 898.CrossRefGoogle Scholar
Dudley, W. A., Kim, S. M. and Winegardner, M. (1980). The use of gelatin capsules for measuring true metabolizable energy. Poultry Science 59(7): 1601.Google Scholar
Du Preez, J. J., Hayes, J. P. and Duckitt, J. S. (1981). Endogenous energy, a cause of biased true metabolizable energy values. South African Journal of Animal Science 11(3): 269.Google Scholar
Du Preez, J. J., Minaar, A. Du P. and Duckitt, J. S. (1984). An alternative approach to a compulsive change from conventional to rapid methods of evaluating metabolizable energy. World's Poultry Science Journal 40(2): 121.CrossRefGoogle Scholar
Edmundson, I. C. (1980a). True metabolizable energy trial ME/13(C). Page 99 in Summary of Final Reports and Current Research, Poultry Research Centre, Massey University, New Zealand.Google Scholar
Edmundson, I. C. (1980b). The true metabolizable energy of meat and bone meal determined at different dose levels. Pages 2025 in Proceedings of the South Pacific Poultry Science Convention, Auckland, N.Z.Google Scholar
Farrell, D. J. (1978a). Energy systems in poultry, how well do they predict biological performance? Pages 96to 105in Proceedings of the 24th Annual Poultry Convention, Poultry Research Centre, Massey University, New Zealand.Google Scholar
Farrell, D. J. (1978b). Rapid determination of metabolzable energy of foods using cockerels. British Poultry Science 19(3): 303.CrossRefGoogle Scholar
Farrell, D. J. (1980a). True metabolizable energy (TME) and the alternative. Pages 146–153 in Recent Advances in Animal Nutrition 1980. Farrell, D. J., ed. University of New England Publishing Unit, Armidale, New South Wales, Australia.Google Scholar
Farrell, D. J. (1980b). The case for retaining the apparent metabolizable energy system because of variation in endogenous excreta. Proceedings of the Poultry Husbandry Research Foundation Symposium,Sydney, New South Wales, Australia.Google Scholar
Farrell, D. J. (1980c). The ‘rapid method’ of measuring the metabolizable energy of feedstuffs. Feedstuffs 52(45): 24.Google Scholar
Farrell, D. J. (1981). An assessment of quick bioassays for determining the true metabolizable energy and apparent metabolizable energy of poultry feedstuffs. World's Poultry Science Journal 37(2): 72.CrossRefGoogle Scholar
Fisher, C. (1982). Occasional Publication No. 2, ARC Poultry Research Centre, Scotland.Google Scholar
Fraser, D. and Sibbald, I. R. (1983). The effects of precision feeding on the behaviour of adult cockerels. Poultry Science 62(11): 2224.CrossRefGoogle ScholarPubMed
Gous, R. M. and Dennison, C. (1983). The metabolizable energy content of some South African feedingstuffs evaluated with poultry. South African Journal of Animal Science 13(3): 147.Google Scholar
Jones, J. D. and Sibbald, I. R. (1979). The true metabolizable energy values for poultry of fractions of rapeseed (Brassica napus cv. Tower). Poultry Science 58(2): 385.CrossRefGoogle Scholar
Jonsson, G. and McNab, J. (1983). A comparison of methods for estimating the metabolizable energy of a sample of grass meal. British Poultry Science 24(3): 349.CrossRefGoogle Scholar
Kussaibati, R., Prevotel, B. and Leclercq, B. (1983). Factors affecting endogenous energy losses in chickens—assessment of the methods of estimation. Nutrition Reports International 27(2): 221.Google Scholar
Likuski, H. J. A. and Dorrell, H. G. (1978). A bioassay for rapid determination of amino acid availability values. Poultry Science 57(6): 1658.CrossRefGoogle Scholar
McNab, J. M. and Fisher, C. (1981). The choice between apparent and true metabolizable energy systems—recent evidence. Pages 4555 in Proceedings of the 3rd European Symposium on Poultry Nutrition. Shannon, D. W. F. and Wallace, I. E. eds., Edinburgh.Google Scholar
McNab, J. M. and Fisher, C. (1984). An assay for true and apparent metabolizable energy. Proceedings and Abstracts, World's Poultry Science Congress, pp. 274–275.Google Scholar
Minaar, A., Du, P. and Erasmus, J. (1981). Ware metaboliseerbare energiewaardes met stikstofkorreksies om additiwiteit by plumveediete te verbeter. South African Journal of Animal Science 11(3): 279.Google Scholar
Mohamed, K., Leclercq, B., Anwar, S., El-Alaily, H. and Soliman, H. (1984). A comparative study of metabolizable energy in ducklings and domestic chicks. Animal Feed Science and Technology 11(3): 199.CrossRefGoogle Scholar
Muztar, A. J. and Slinger, S. J. (1979). Effect of length of excreta collection period and feed input level on the true metabolizable energy value of rapeseed meal. Nutrition Reports International 19(5): 689.Google Scholar
Muztar, A. J. and Slinger, S. J. (1980). An evaluation of the rapid apparent metabolizable energy assay in relation to feed intake using mature cockerels. Nutrition Reports International 22(5): 1745.Google Scholar
Muztar, A. J. and Slinger, S. J. (1982). The true metabolizable energy and amino acid content of Candle, Altex and Regent canola meals. Canadian Journal of Animal Science 62(2): 521.CrossRefGoogle Scholar
Ostrowski-Meissner, H. T. (1984). A method for simultaneous measurement of apparent (AME) and true (TME) metabolizable energy with ducks and comparisons of data obtained with drakes and cockerets. Nutrition Reports International 29(5): 1239.Google Scholar
Parsons, C. M., Potter, L. M. and Bliss, B. A. (1982). True metabolizable energy corrected to nitrogen equilibrium. Poultry Science 61(11): 2241.CrossRefGoogle Scholar
Parsons, C. M., Potter, L. M. and Bliss, B. A. (1984). A modified voluntary feed intake bioassay for determination of metabolizable energy with Leghorn roosters. Poultry Science 63(8): 1610.CrossRefGoogle Scholar
Ranaweera, K. N. P. and Nano, W. E. (1981). True and apparent metabolizable energy of some indigenous feedingstuffs and finished feeds determined by modified rooster bioassay techniques. Journal of Agricultural Science (Cambridge) 97(2): 403.CrossRefGoogle Scholar
Rao, P. V. and Clandinin, D. R. (1970). Effect of method of determination on the metabolizable energy value of rapeseed meal. Poultry Science 49(4): 1069.CrossRefGoogle Scholar
Schang, M. J. and Hamilton, R. M. G. (1982). Comparison of two direct bioassays using adult cocks and four indirect methods for estimating the metabolizable energy content of different feedingstuffs. Poultry Science 61(7): 1344.CrossRefGoogle Scholar
Schang, M. J., Leeson, S. and Summers, J. D. (1982). Effect of double force feeding on true metabolizable energy. Canadian Journal of Animal Science 62(3): 963.CrossRefGoogle Scholar
Schang, M. J., Sibbald, I. R. and Hamilton, R. M. G. (1983). Comparison of two direct bioassays using young chicks and two internal indicators for estimating the metabolizable energy content of feedingstuffs. Poultry Science 62(1): 117.CrossRefGoogle Scholar
Shen, T.-F. and Dean, F. (1982). True metabolizable energy value of corn and soybean meal for ducks. Poultry Science 61(7): 1543.Google Scholar
Sibbald, I. R. (1975). The effect of level of feed intake on metabolizable energy values measured with adult roosters. Poultry Science 54(6): 1990.CrossRefGoogle ScholarPubMed
Sibbald, I. R. (1976). A bioassay for true metabolizable energy in feedingstuffs. Poultry Science 55(1): 303.CrossRefGoogle ScholarPubMed
Sibbald, I. R. (1977). A test of the additivity of true metabolizable energy values of feedingstuffs. Poultry Science 56(1): 363.CrossRefGoogle Scholar
Sibbald, I. R. (1978a). Scientists study metabolizable energy variations in swine and poultry diets. Feedstuffs 50(48): 20.Google Scholar
Sibbald, I. R. (1978b). The effect of the duration of the time interval between assays on true metabolizable energy values measured with adult roosters. Poultry Science 57(2): 455.CrossRefGoogle Scholar
Sibbald, I. R. (1979a). The effect of the duration of the excreta collection period on the true metabolizable energy values of feedingstuffs with slow rates of passage. Poultry Science 48(4): 896.CrossRefGoogle Scholar
Sibbald, I. R. (1979b). A bioassay for available amino acids and true metabolizable energy in feedingstuffs. Poultry Science 58(3): 1668.Google Scholar
Sibbald, I. R. (1979c). Bioavailable amino acids and true metabolizable energy of cereal grains. Poultry Science 58(4): 934.CrossRefGoogle Scholar
Sibbald, I. R. (1982). Measurement of bioavailable energy in poultry feedingstuffs: a review. Canadian Journal of Animal Science 62(4): 983.CrossRefGoogle Scholar
Sibbald, I. R. (1983). The TME system of feed evaluation. Agriculture Canada, Research Branch contribution 1983–20E.Google Scholar
Sibbald, I. R. and Morse, P. M. (1982). Pooling excreta prior to calorimetry in the bioassay for true metabolizable energy: the effect on estimates of variances. Poultry Science 61(9): 1853.CrossRefGoogle Scholar
Sibbald, I. R. and Morse, P. M. (1983a). The effect of feed input and excreta collection time on estimates of metabolic plus endogenous energy losses in the bioassay for true metabolizable energy. Poultry Science 62(1): 68.CrossRefGoogle Scholar
Sibbald, I. R. and Morse, P. M. (1983b). Effects of the nitrogen correction and of feed intake on true metabolizable energy values. Poultry Science 62(1): 138.CrossRefGoogle Scholar
Sibbald, I. R. and Morse, P. M. (1983c). Provision of supplemental feed and the application of a nitrogen correction in bioassays for true metabolizable energy. Poultry Science 62(8): 1587.CrossRefGoogle Scholar
Sibbald, I. R. and Morse, P. M. (1983d). Recent developments in the bioassay for true metabolizable energy in poultry feedingstuffs. Pages 239–242 in Feed Information and Animal Production. Robards, G. E. and Packham, R. G. eds. CAB. U.K.Google Scholar
Sibbald, I. R. and Morse, P. M. (1983e). Provision of supplemental feed and the application of a nitrogen correction in bioassays for true metabolizable energy. Poultry Science 62(8): 1587.CrossRefGoogle Scholar
Sibbald, I. R. and Price, K. (1980). Variation in metabolic plus endogenous energy losses in adult cockerels and in the true metabolizable energy values and rates of passage of dehydrated alfalfa. Poultry Science 59(6): 1275.CrossRefGoogle ScholarPubMed
Sibbald, I. R. and Wolynetz, M. S. (1984). A longitudinal study of energy and nitrogen excretion by fasted cockerels. Poultry Science 63(4): 691.CrossRefGoogle ScholarPubMed
Wehner, G. R. and Harrold, R. L. (1982). The effect of feeding techniques on the true metabolizable energy value of yellow corn. Poultry Science 61(3): 595.CrossRefGoogle Scholar
Wolynetz, M. S. and Sibbald, I. R. (1984). Relationships between apparent and true metabolizable energy and the effects of a nitrogen correction. Poultry Science 63(7): 1386.CrossRefGoogle Scholar