Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T11:56:09.186Z Has data issue: false hasContentIssue false

The domestic fowl in biomedical research: physiological effects of the environment

Published online by Cambridge University Press:  18 September 2007

B. M. Freeman
Affiliation:
Houghton Laboratory, Institute for Animal Health, Houghton, Huntingdon, Cambs. PE17 2DA. England.
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R. L. and Rogler, J. C. (1968). The effects of dietary aspirin and humidity on the performance of light and heavy breed chicks. Poultry Science 47: 13441348.CrossRefGoogle ScholarPubMed
Anderson, D. P., Cherms, F. L. and Hanson, R. P. (1964a). Studies on measuring the environment of turkeys raised in confinement. Poultry Science 43: 305318.CrossRefGoogle Scholar
Anderson, D. P., Beard, C. A. and Hanson, R. P. (1964b). The adverse effects of ammonia on chickens including resistance to infection with Newcastle disease virus. Avian Diseases 8: 369379.CrossRefGoogle Scholar
Anderson, D. P., Beard, C. W. and Hanson, R. P. (1966). Influence of poultry house dust, ammonia and carbon dioxide on the resistance of chickens to Newcastle disease virus. Avian Diseases 10: 177188.CrossRefGoogle ScholarPubMed
Arad, Z. and Marder, J. (1982a). Comparative thermoregulation of four breeds of fowl (Gallus domesticus), exposed to a gradual increase of ambient temperatures. Comparative Biochemistry and Physiology 72A: 179184.CrossRefGoogle Scholar
Arad, Z. and Marder, J. (1982b). Egg-shell water vapour conductance of the domestic fowl: comparison between two breeds and their crosses. British Poultry Science 23: 325328.CrossRefGoogle Scholar
Arieli, A., Meltzer, A. and Berman, A. (1980). The thermoneutral temperature zone and seasonal acclimatisation in the hen. British Poultry Science 21: 471478.CrossRefGoogle ScholarPubMed
Arima, Y., Mather, F. B. and Ahmad, M. M. (1976). Response of egg production and shell quality to increases in environmental temperature in two age groups of hens. Poultry Science 55: 818820.CrossRefGoogle Scholar
Barott, H. G. (1937). Effects of temperature, humidity and other factors on hatch of hens' eggs and on energy metabolism on chick embryos. Technical Bulletin of the US Department of Agriculture. 553.Google Scholar
Barott, H. G. and Pringle, E. M. (1941). Energy and gaseous metabolism of the hen as affected by temperature. Journal of Nutrition 22: 273286.CrossRefGoogle Scholar
Beane, W. L., Siegel, P. B. and Siegel, H. S. (1962). The effect of light on body weight and feed conversion of broilers. Poultry Science 41: 13501351.CrossRefGoogle Scholar
Beane, W. L., Siegel, P. B. and Siegel, H. S. (1963). Interactions of lighting regimes, stock and feeding methods on broiler performance. Poultry Science 42: 1255.Google Scholar
Beane, W. L., Siegel, P. B. and Siegel, H. S. (1965). Light environment as a factor in growth and feed efficiency of meat type chicken. Poultry Science 44: 10091012.CrossRefGoogle Scholar
Beattie, J. and Smith, A. H. (1975). Metabolic adaptation of the chick embryo to chronic hypoxia. American Journal of Physiology 228: 13461350.CrossRefGoogle ScholarPubMed
Benedict, F. G., Landauer, W. and Fox, E. L. (1932). The physiology of normal and frizzle fowl with special reference to the basal metabolism. Bulletin of the Storrs Agricultural Experimental Station 177.Google Scholar
Ben Nathan, D., Heller, E. D. and Perek, M. (1976). The effect of short heat stress upon leucocyte counts, plasma corticosterone level, plasma and leucocyte ascorbic acid content. British Poultry Science 17: 481485.CrossRefGoogle Scholar
Berman, A. and Meltzer, A. (1978). Metabolic rate: its circadian rhythmicity in the female domestic fowl. Journal of Physiology, London 282: 419427.CrossRefGoogle ScholarPubMed
Bernstein, M. H. (1973). Development of thermoregulation in painted quail, Excalfactoria chinesis. Comparative Biochemistry and Physiology 44A: 355366.CrossRefGoogle Scholar
Bernstein, M. H. and Samaniego, F. C. (1981). Ventilation and acid-base status during thermal panting in pigeons (Columba livia). Physiological Zoology 54: 308315.CrossRefGoogle Scholar
Beuving, G. and Vonder, G. M. A. (1978). Effect of stressing factors on corticosterone levels in the plasma of laying hens. General and Comparative Endocrinology 35: 153159.CrossRefGoogle ScholarPubMed
Bhatti, B. M. and Morris, T. R. (1978). The relative importance of sunrise and sunset for entrainment of oviposition in the fowl. British Poultry Science 19: 365371.CrossRefGoogle ScholarPubMed
Blake, A. G., Mather, F. B. and Gleaves, E. W. (1984). Dietary self-selection of laying hens inadequate to overcome the effects of high environmental temperature. Poultry Science 63: 13461349.CrossRefGoogle ScholarPubMed
Bland, M. C., Nakaue, H. S., Goeger, M. P. and Helfer, D. H. (1985). Duration of exposure-histological effects on broiler lungs, performance and house environment with Mt St Helen's volcanic ash dust. Poultry Science 64: 5158.CrossRefGoogle Scholar
Bligh, J. and Johnson, K. G. (1973). Glossary of terms for thermal physiology. Journal of Applied Physiology 35: 941961.CrossRefGoogle ScholarPubMed
Brackenbury, J. H., Avery, P. and Gleeson, M. (1981). Respiration in exercising fowl. I. Oxygen consumption, respiratory rate and respired gases. Journal of Experimental Biology 93: 317325.CrossRefGoogle ScholarPubMed
Braganza, A. F., Peterson, R. A. and Cenedella, R. J. (1973). The effects of heat and glucagon on the plasma glucose and free fatty acids of the domestic fowl. Poultry Science 52: 5863.CrossRefGoogle ScholarPubMed
Breitenbach, R. P. and Baskett, T. S. (1967). Ontogeny of thermoregulation in the mourning dove. Physiological Zoology 40: 207217.CrossRefGoogle Scholar
Bruckner, J. H. (1936). The effect of environmental conditions on winter egg production. Poultry Science 15: 417418.Google Scholar
Cain, J. R. and Wilson, W. O. (1974). The influence of specific environmental parameters on the circadian rhythms of chickens. Poultry Science 53: 14381447.CrossRefGoogle ScholarPubMed
Calder, W. A. and Schmidt-Nielsen, K. (1968). Panting and blood carbon dioxide in birds. American Journal of Physiology 215: 477482.CrossRefGoogle ScholarPubMed
Charles, D. R. and Payne, C. G. (1966a). The influence of graded levels of atmospheric ammonia on chickens. 1. Effect on respiration and the performance of broilers and replacement growing stock. British Poultry Science 7: 177187.CrossRefGoogle Scholar
Charles, D. R. and Payne, C. G. (1966b). The influence of graded levels of atmospheric ammonia on chickens. II. Effects on the performance of laying hens. British Poultry Science 7: 189198.CrossRefGoogle ScholarPubMed
Cherry, P. and Barwick, M. W. (1962a). The effect of light on broiler growth. I. Light intensity and coour. British Poultry Science 3: 3139.CrossRefGoogle Scholar
Cherry, P. and Barwick, M. W. (1962b). The effect of light on broiler growth. II. Light patterns. British Poultry Science 3: 4150.CrossRefGoogle Scholar
Chi, M. S. (1985). Effect of low protein diets for growing leghorn pullets upon subsequent laying performance. British Poultry Science 26: 433440.CrossRefGoogle ScholarPubMed
Christensen, V. L. and Bagley, R. A. (1984). Vital gas exchange and hatchability of turkey eggs at high altitude. Poultry Science 63: 13501356.CrossRefGoogle ScholarPubMed
Clark, C. E. and Das, G. P. (1974). Effect of high environmental temperature on internal organs of chickens. Poultry Science 53: 859863.CrossRefGoogle ScholarPubMed
Clough, G. (1982). Environmental effects on animals used in biomedical research. Biological Reviews 57: 487523.CrossRefGoogle ScholarPubMed
Cogburn, L. A. and Harrison, P. C. (1980). Adrenal, thyroid and rectal temperature responses of pinealectomized cockerels to different ambient temperatures. Poultry Science 59: 11321141.CrossRefGoogle ScholarPubMed
Cowan, P. J. and Michie, W. (1980). Increasing the environmental temperature later in lay and performance of the fowl. British Poultry Science 21: 339343.CrossRefGoogle Scholar
Craig, J. V., Dayton, A. D., Garwood, V. A. and Lowe, P. C. (1982). Selection for egg mass in different social environments. 1. Selection response in phase 1. Poultry Science 61: 17861798.CrossRefGoogle Scholar
Cueva, S., Sillau, H., Valenzuela, A. and Ploog, H. (1974). High altitude induce pulmonary hypertension and right heart failure in broiler chickens. Research in Veterinary Science 16: 370374.CrossRefGoogle ScholarPubMed
Davis, R. H., Hassan, O. E. M. and Sykes, A. H. (1973). Energy utilization in the laying hen in relation to ambient temperature. Journal of Agricultural Science, Cambridge 81: 173177.CrossRefGoogle Scholar
Davison, T. F. and Lickiss, P. A. (1979). The effect of cold stress on the fasted, water-deprived, neonate chicken (Gallus domesticus). Journal of Thermal Biology 4: 113120.CrossRefGoogle Scholar
Deaton, J. W., May, J. D., Kubena, L. F. and Reece, F. N. (1976). Physiological changes associated with acclimation of broiler chickens to constant temperatures. International Journal of Biometeorology 20: 333336.CrossRefGoogle ScholarPubMed
Deaton, J. W., McNaughton, J. L. and Lott, B. D. (1982). Effects of heat stress on laying hens acclimated to cyclic versus constant temperatures. Poultry Science 61: 875878.CrossRefGoogle Scholar
Denbow, D. M. and Kuenzel, W. J. (1978). Gaseous metabolism of Leghorns and broilers during early growth: resting metabolic rate. Poultry Science 57: 14171422.CrossRefGoogle ScholarPubMed
Denbow, D. M. and Kuenzel, W. J. (1981). Gaseous metabolism of Leghorns and broilers during early growth: existence energy rate. Poultry Science 60: 13401343.CrossRefGoogle ScholarPubMed
Draper, M. H. and Lake, P. E. (1967). Physiological reactions of the laying fowl to adverse environments, with special reference to the defence reaction. In: Environmental Control in Poultry Production, pp. 81100. Edit. Carter, T. C.Edinburgh, Oliver and Boyd.Google Scholar
Drury, L. N. and Siegel, H. S. (1966). Air velocity and heat tolerance of young chickens. Transactions of the American Society of Agricultural Engineers 9: 583585.Google Scholar
Duncan, I. J. H. (1979). Some studies on heart-rate and behaviour in the domestic fowl. Applied Animal Ethology 5: 294295.CrossRefGoogle Scholar
Dutkiewicz, J. (1978). Exposure to dust-borne bacteria in agriculture. 1. Environmental studies. Archives of Environmental Health 33: 250259.CrossRefGoogle Scholar
Edens, F. W. and Siegel, H. S. (1973). Plasma catecholamines during high temperature exposure in Athens randombred families. Poultry Science 52: 2024.Google Scholar
Edens, F. W. and Siegel, H. S. (1976). Modification of corticosterone and glucose responses by sympatholytic agents in young chickens during acute heat exposure. Poultry Science 55: 17041712.CrossRefGoogle ScholarPubMed
El-Hadi, H. and Sykes, A. H. (1982). Thermal panting and respiratory alkalosis in the laying hen. British Poultry Science 23: 4957.CrossRefGoogle ScholarPubMed
El-Halawani, M. E., Waibel, P. E., Appel, J. R. and Good, A. L. (1973). Effects of temperature stress on catecholamines of male turkeys. American Journal of Physiology 224: 384388.CrossRefGoogle ScholarPubMed
Ells, J. B. and Morris, L. (1947). Factors involved in hatching chicken and turkey eggs at high elevations. Poultry Science 26: 635638.CrossRefGoogle Scholar
Emmans, G. C. (1974). The effects of temperature on the performance of laying hens. In: Energy Requirements of Poultry, pp. 7990. Edit. Morris, T. R. and Freeman, B. M.Edinburgh, British Poultry Science Ltd.Google Scholar
Faddoul, G. P. and Ringrose, R. C. (1950). Avian keratoconjunctivitis. Veterinary Medicine 45: 492493.Google ScholarPubMed
Farrell, D. J. (1972). An indirect closed circuit respiration chamber suitable for fowl. Poultry Science 51: 683688.CrossRefGoogle ScholarPubMed
Farrell, D. J. and Swain, S. (1977). Effects of temperature treatments on the energy and nitrogen metabolism of fed chickens. British Poultry Science 18: 735748.CrossRefGoogle ScholarPubMed
Francis, D. W., Bernier, P. E. and Hutte, D. C. (1967). The effect of altitude on the hatchability of chicken eggs. Poultry Science 46: 384.CrossRefGoogle ScholarPubMed
Freeman, B. M. (1964). The emergence of the homeothermic-metabolic response in the fowl (Gallus domesticus). Comparative Biochemistry and Physiology 13: 413422.CrossRefGoogle ScholarPubMed
Freeman, B. M. (1965). The relationship between oxygen consumption, body temperature and surface area in the hatching and young chick. British Poultry Science 6: 6772.CrossRefGoogle ScholarPubMed
Freeman, B. M. (1967a). Some effects of cold on the metabolism of the fowl during the perinatal period. Comparative Biochemistry and Physiology 20: 179193.CrossRefGoogle Scholar
Freeman, B. M. (1967b). Oxygen consumption by the Japanese quail Coturnix coturnix japonica. British Poultry Science 8: 147152.CrossRefGoogle Scholar
Freeman, B. M. (1978). Metabolic response of the neonatal fowl, Gallus domesticus, to short-term heat stress. Journal of Thermal Biology 3: 4950.CrossRefGoogle Scholar
Freeman, B. M. (1982). Stress nonresponsiveness in the newly hatched fowl. Comparative Biochemistry and Physiology 72A: 251253.CrossRefGoogle Scholar
Freeman, B. M. and Flack, I. H. (1980). Effect of handling on plasma corticosterone concentrations in the immature domestic fowl. Comparative Biochemistry and Physiology 66A: 7781.CrossRefGoogle Scholar
Freeman, B. M. and Manning, A. C. C. (1979). Stressor effects of handling on the immature fowl. Reserch in Veterinary Science 26: 223226.CrossRefGoogle ScholarPubMed
Freeman, B. M., Manning, A. C. C. and Flack, I. H. (1980). Photoperiod and its effect on the response of the immature fowl to stressors. Comparative Biochemistry and Physiology 68A: 411416.Google Scholar
Freeman, B. M., Manning, A. C. C. and Flack, I. H. (1981). The effects of restricted feeding on adrenal cortical activity in the immature domestic fowl. British Poultry Science 22: 295303.CrossRefGoogle ScholarPubMed
Funk, E. M. and Forward, J. (1951). Effect of humidity and turning of eggs before incubation on hatching results. Research Bulletin of the Missouri Agriculture Experiment Station 554.Google Scholar
Garlich, J. D. and McCormick, C. C. (1981). Interrelationship between environmental temperature and nutritional status of chicks. Federation Proceedings, Federation of American Societies for Experimental Biology 40: 7376.Google ScholarPubMed
Geers, R. (1981). Feed efficiency of RIR hens (Gallus gallus L) as affected by pre-and postnatal environmental temperatures in relation to development, reproduction and intermediary metabolism. Agricultura 29: 491609.Google Scholar
Geers, R., Michels, H. and Decuypere, E. (1978). A critical analysis of fasting metabolism data in RIR hens (Gallus gallus). Annales de Biologie Animale et Biochemie et Biophysique 18: 13631369.CrossRefGoogle Scholar
Giaja, A. (1929). Sur la thermorégulation des oiseaux partiellement plumés. Comptes Rendus de la Société de Biologie, Paris 100: 12251226.Google Scholar
Gillette, D. D. (1976). Reproductive response of geese to a cool environment. Poultry Science 55: 824826.CrossRefGoogle ScholarPubMed
Graul, C., Wildenhahn, V., Lyhs, L. and Lohse, W. (1976). Der Einfluss von Geräuschen auf physiologische Funktionen beim Huhn. 2. Mitteilung: Zur Anpassung von weissen Leghornhennen und Broilern an Geräusehe. Archiv für Experimentelle Veterinärmedizin 30: 643650.Google Scholar
Greenwood, A. W. (1962). An experiment with a constant environment for the domestic fowl. Animal Production 4: 8090.Google Scholar
Grinnel, A. D. (1969). Comparative physiology of hearing. Annual Review of Physiology 31: 545580.CrossRefGoogle Scholar
Gross, W. B. (1972). Effect of social stress on occurrence of Marek's disease in chickens. American Journal of Veterinary Research 33: 2275.Google ScholarPubMed
Gross, W. B. and Colmano, G. (1967). Further studies of social stress on disease resistance. Poultry Science 46: 4146.CrossRefGoogle Scholar
Gross, W. B. and Colmano, G. (1970). The effect of social stress on infectious diseases. Poultry Science 49: 1390.Google Scholar
Gross, W. B. and Siegel, H. S. (1965). The effect of social stress on resistance to infection with Escherichia coli or Mycoplasma gallisepticum. Poultry Science 44: 9981001.CrossRefGoogle Scholar
Gross, W. B. and Siegel, P. B. (1973). Effect of social stress and steroids on antibody production. Avian Diseases 17: 807815.CrossRefGoogle ScholarPubMed
Gross, W. B. and Siegel, P. B. (1979). Adaptation of chickens to their handler and experimental results. Avian Diseases 23: 708714.CrossRefGoogle ScholarPubMed
Gross, W. B. and Siegel, P. B. (1980). Effects of early environmental stresses on chicken body weight, antibody response to RBC antigens, feed efficiency and response to fasting. Avian Diseases 24: 569579.CrossRefGoogle ScholarPubMed
Gross, W. B. and Siegel, P. B. (1981). Long-term exposure of chickens to three levels of social stress. Avian Diseases 25: 312325.CrossRefGoogle ScholarPubMed
Haartsen, P. I. and Weerden, E. J. Van (1965). De invloed van verlichtingssterke en lichtkleur bij opfok van slachtkuikens. Landbourwkundig Ti jdschrift, 's-Gravenhage 77: 135144.Google Scholar
Hagan, A. A. and Heath, J. E. (1976). Metabolic responses of White Pekin ducks to ambient temperature. Poultry Science 55: 18991905.CrossRefGoogle ScholarPubMed
Harner, J. P. and Wilson, J. H. (1985). Effects of body size and cage profile on the sheer strength of bones of caged layers. British Poultry Science 26: 543548.CrossRefGoogle Scholar
Harrison, P. C. and Biellier, M. V. (1969). Physiological response of domestic fowl to abrupt changes of ambient air temperature. Poultry Science 48: 10341045.CrossRefGoogle ScholarPubMed
Henken, A. M., Schaarsberg, Groote A. M. J. and Nieuwland, M. G. B. (1983a). The effect of environmental temperature on immune response and metabolism of the young chicken. 3. Effect of environmental temperature on the humoral response following injection of sheep red blood cells. Poultry Science 62: 5158.CrossRefGoogle Scholar
Henken, A. M., Nieuwland, M. G. B. and Wensink, G. (1983b). The effect of environmental temperature on immune response and metabolism of the young chicken. 5. Effect of low environmental temperature on the humoral immune response to sheep red blood cells in relation to energy metabolism. Poultry Science 62: 10691074.CrossRefGoogle Scholar
Hester, P. Y., Smith, S. G., Wilson, E. K. and Pierson, F. W. (1981). The effect of prolonged heat stress on adrenal weight, cholesterol and corticosterone in White Pekin ducks. Poultry Science 60: 15831586.CrossRefGoogle ScholarPubMed
Hilliger, H. G. (1966). Beitrag zur Entstehung von Gasen ans Tiefstren und Kotgrube in Huhnestallen. Archiv für Geflügelkunde 30: 6986.Google Scholar
Hinshaw, W. R. (1961). Physical factors that influence transmission of disease. US Department of Agriculture, Agricultural Research Service 45–2: 8185.Google Scholar
Horton, J. M. and Dingle, A. N. (1961). The role of air in the transmission of disease. US Department of Agriculture, Agricultural Research Service 45–2: 9195.Google Scholar
Hou, S. M., Boone, M. A. and Long, J. T. (1973). An electrophysiological study on the hearing and vocalization in Gallus domesticus. Poultry Science 52: 159164.CrossRefGoogle Scholar
Hudson, C. B. (1931). The influence of environmental temperature on the mortality in chicks inoculated with the virus of infectious bronchitis. Poultry Science 10: 391.Google Scholar
Hughes, B. O. and Black, A. J. (1974). The effect of environmental factors on activity, selected behavioural patterns and “fear” of fowls in cages and pens. British Poultry Science 15: 375380.CrossRefGoogle Scholar
Hughes, B. O. and Black, A. J. (1976a). The influence of handling on egg production, egg quality and avoidance behaviour of hens. British Poultry Science 17: 135144.CrossRefGoogle Scholar
Hughes, B. O. and Black, A. J. (1976b). Battery cage shape: its effect on diurnal feeding pattern, egg shell cracking and feather pecking. British Poultry Science 17: 327336.CrossRefGoogle Scholar
Huston, T. M. (1965). The influence of different environmental temperatures on immature fowl. British Poultry Science 44: 10321036.CrossRefGoogle ScholarPubMed
Huston, T. M. (1975). The effects of environmental temperature on fertility of the domestic fowl. Poultry Science 54: 11801184.CrossRefGoogle ScholarPubMed
Hutt, F. B. and Crawford, R. D. (1960). On breeding chicks resistant to pullorum disease without exposure thereto. Canadian Journal of Genetics and Cytology 2: 357370.CrossRefGoogle Scholar
Jacobson, L. D. and Jordan, K. A. (1978). Aerosol concentrations in a turkey barn environment. Transactions of the American Society of Agricultural Engineers 21: 325328.CrossRefGoogle Scholar
Johnson, R. J., Choice, A., Farrell, D. J. and Cumming, R. B. (1984). Production responses of layer strain hens to food restriction during rearing. British Poultry Science 25: 369387.CrossRefGoogle ScholarPubMed
Jones, R. B., Harvey, S., Hughes, B. O. and Chadwick, A. (1980). Growth and the plasma concentrations of growth hormone and prolactin in chicks: effects of “environmental enrichment”, sex and strain. British Poultry Science 21: 457462.CrossRefGoogle ScholarPubMed
Jones, R. L. and Wiseman, J. (1985). Effect of nutrition or broiler carcase composition: influence of dietary energy content in the starter and finisher phases. British Poultry Science 26: 381388.CrossRefGoogle ScholarPubMed
Kaltofen, R. S. (1969). The effect of air movements on hatchability and weight loss of chicken eggs during artificial incubation. In: The Fertility and Hatchability of the Hen's Egg, pp. 177189. Edit. Carter, T. C. and Freeman, B. M.Edinburgh, Oliver and Boyd.Google Scholar
Keller, J. and Chwalibog, A. (1974). Fasting heat production in broilers in relation to the feeding level. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 33: 217218.Google Scholar
Keller, J. S. and Piekarzewska, A. (1976). The fasting heat production of chickens growing at a different rate. In: Energy Metabolism of Farm Animals, pp. 175188. Edit. Vermorel, M.Clermond-Ferrand, de Bussac.Google Scholar
Kendeigh, S. C. and Baldwin, S. P. (1928). Development of temperature control in nestling house wrens. American Naturalist 62: 249278.CrossRefGoogle Scholar
Khaskin, V. V. (1960). Development of thermoregulation in the domestic duck. Sechenov Journal of Physiology 46: 17461756.Google ScholarPubMed
King, J. O. L. (1956). The body temperature of chicks during the first fourteen days of life. British Veterinary Journal 112: 155159.CrossRefGoogle Scholar
Klandorf, H., Sharp, P. J. and MacLeod, M. G. (1981). The relationship between heat production and concentrations of plasma thyroid hormones in the domestic hen. General and Comparative Endocrinology 45: 512520.CrossRefGoogle ScholarPubMed
Kotrbacek, V. (1973). Age-dependent changes in O2 consumption and CO2 production of Pekin ducks from hatch to 60 days of age at different ambient temperatures. Acta Veterinaria, Brno 42: 1521.Google Scholar
Kubena, L. F., May, J. D., Reece, F. N. and Deaton, J. W. (1972). Hematocrit and hemoglobin of broilers as influenced by environmental temperature and dietary iron level. Poultry Science 51: 759763.CrossRefGoogle ScholarPubMed
Kuhn, E. R. and Nouwen, E. J. (1978). Serum levels of triidothyronine and thyroxine in the domestic fowl following mild cold exposure and injection of synthetic thyrotropin-releasing hormone. General and Comparative Endocrinology 34: 336342.CrossRefGoogle Scholar
Lasiewski, R. C., Acosta, A. L. and Berstein, M. H. (1966). Evaporative water loss in birds. I. Characteristics of the open flow method of determination, and their relation to estimates of thermo- regulatory ability. Comparative Biochemistry and Physiology 19: 45457.CrossRefGoogle Scholar
Lauber, J. K. (1964). Reproductive performance of domestic fowl maintained under continuous light. Journal of Reproduction and Fertility 7: 409411.CrossRefGoogle ScholarPubMed
Lauber, J. K. and Shutze, J. V. (1964). Accelerated growth of embryo chicks under the influence of light. Growth 28: 179190.Google ScholarPubMed
Lee, D. J. W. and Bolton, W. (1976). Battery cage shape: the laying performance of medium- and light-body weight strains of hens. British Poultry Science 17: 321326.CrossRefGoogle Scholar
Lee, D. J. W., Bolton, W. and Dewar, W. A. (1978). Effects of battery cage shape and dietary energy regulation on the performance of laying hens offered diets containing dried poultry manure. British Poultry Science 19: 607622.CrossRefGoogle Scholar
Lin, Y. -C. and Sturkie, P. D. (1968). Effect of environmental temperatures on the catecholamines of chickens. American Journal of Physiology 241: 237240.CrossRefGoogle Scholar
Loft, B. D. and Reece, F. N. (1981). The effect of ambient air moisture and temperature on egg shell breaking strength. Poultry Science 60: 142144.Google Scholar
Lundy, H. (1969). A review of the effects of temperature, humidity, turning and gaseous environment in the incubator on the hatchability of the hen's egg. In: The Fertility and Hatchability of the Hen's egg, pp. 143176, Edit. Carter, T. C. and Freeman, B. M.Edinburgh, Oliver and Boyd.Google Scholar
Lundy, H., MacLeod, M. G. and Jewitt, T. R. (1978). An automated multi-calorimeter system: preliminary experiments on laying hens. British Poultry Science 19: 173186.CrossRefGoogle ScholarPubMed
MacLeod, M. G. and Shannon, D. W. F. (1978). Effects of food intake regulation on the energy metabolism of laying hens. British Poultry Science 19: 349363.CrossRefGoogle Scholar
MacLeod, M. G., Tullett, S. G. and Jewitt, T. R. (1979). Effects of food intake regulation on the energy metabolism of hens and cockerels of a laying strain. British Poultry Science 20: 521531.CrossRefGoogle Scholar
MacLeod, M. G., Tullett, S. G. and Jewitt, T. R. (1980). Circadian variation in the metabolic rate of growing chickens and laying hens of a broiler strain. British Poultry Science 21: 155159.CrossRefGoogle ScholarPubMed
Manning, R. O. and Wyatt, R. D. (1984). Resistance to aflatoxicosis in broiler chickens by exposure to low environmental temperature. Poultry Science 63: (Suppl. 1): 143.Google Scholar
Marr, J. E., Garland, F. W., Eaton, R. C. and Wilke, H. L. (1962). Effect of controlled daylength during the growing and laying periods on egg production. Poultry Science 41: 1663.Google Scholar
Marsden, A. and Morris, T. R. (1987). Quantitative review of the effects of environmental temperature on food intake, egg output and energy balance in laying pullets. British Poultry Science 28: 693704.CrossRefGoogle ScholarPubMed
May, J. D. and Glick, B. (1973). Environmental temperature effect on blood gases of chickens. Federation Proceedings, Federation of American Societies for Experimental Biology 32: 349 Abs, 746.Google Scholar
McCluskey, W. H. and Parker, J. E. (1963). The effect of length of daily light periods on reproduction in female chickens. Poultry Science 42: 11611165.CrossRefGoogle Scholar
McCormick, C. C., Garlich, J. D. and Edens, F. W. (1979). Fasting and diet effect the tolerance of young chickens exposed to acute heat stress. Journal of Nutrition 109: 17971809.CrossRefGoogle ScholarPubMed
McNabb, F. M. A. and McNabb, R. A. (1977). The effects of thermal history on body temperature of Japanese quail chicks (Coturnix coturnix japonica). Comparative Biochemistry and Physiology 56A: 627629.CrossRefGoogle Scholar
Meltzer, A. (1983). The effect of body temperature on the growth rate of broilers. British Poultry Science 24: 489495.CrossRefGoogle ScholarPubMed
Meltzer, A., Goodman, G. and Fistool, J. (1982). Thermoneutral zone and resting metabolic rate of growing White Leghorn-type chickens. British Poultry Science 23: 383391.CrossRefGoogle ScholarPubMed
Michels, H, Geers, R. and Muambi, S. (1974). The effect of incubation temperature on pre-and post-hatching development in chickens. British Poultry Science 15: 517523.CrossRefGoogle ScholarPubMed
Michels, H., Decuypere, E. and Geers, R. (1980). Production and physiological criteria in laying Rhode Island Red hens in relation to prenatal and postnatal environmental temperatures. In: Energy Metabolism pp. 371375. Edit. Mount, L. E.London, Butterworths.CrossRefGoogle Scholar
Misson, B. H. (1974). An open circuit respirometer for metabolic studies on the domestic fowl: establishment of standard operating conditions. British Poultry Science 15: 287294.CrossRefGoogle ScholarPubMed
Misson, B. H. (1976). The effects of temperature and relative humidity on the thermoregulatory responses of grouped and isolated neonate chicks. Journal of Agricultural Science, Cambridge 86: 3443.CrossRefGoogle Scholar
Misson, B. H. (1977). The relationship between age, mass, body temperature and metabolic rate in the neonatal fowl (Gallus domesticus). Journal of Thermal Biology 2: 107110.CrossRefGoogle Scholar
Mitchell, H. H. and Haines, W. T. (1972). The critical temperature of the chicken. Journal of Agricultural Research 34: 549557.Google Scholar
Mitchell, M. A. (1985). Effects of air velocity on convective and radiant heat transfer from domestic fowls at environmental temperatures of 20°C and 30°C. British Poultry Science 26: 413423.CrossRefGoogle Scholar
Mohamed, M. A. and Hanson, R. P. (1980). Effect of social stress on Newcastle disease virus (LaSota) infection. Avian Diseases 24: 908915.CrossRefGoogle ScholarPubMed
Morris, T. R. (1962). The effect of changing daylengths on the reproductive responses of the pullet. 12th World's Poultry Science Congress,Sydney 115–125.Google Scholar
Morris, T. R. (1967). Light requirements of the fowl. In: Environmental Control in Poultry Production, pp. 1539. Edit. Carter, T. C.Edinburgh, Oliver and Boyd.Google Scholar
Morris, T. R. and Fox, S. (1961). Increasing versus constant day-length for laying pullets. British Poultry Science 2: 5967.CrossRefGoogle Scholar
Morris, T. R., Fox, S. and Jennings, R. C. (1964). The response of laying pullets to abrupt changes in daylength. British Poultry Science 5: 133147.CrossRefGoogle Scholar
Moss, B. and Balnave, D. (1978). The influence of elevated environmental temperature and nutrient intake on thyroid status and hepatic enzyme activities in immature male chicks. Comparative Biochemistry and Physiology 60B: 157161.Google Scholar
Mount, L. E. (1974). The concept of thermal neutrality. In: Heat Loss from Animals and Man, pp. 425439. Edit. Monteith, J. L. and Mount, L. E.London, Butterworths.CrossRefGoogle Scholar
Mukherjee, T. K., Horst, P., Flock, D. K. and Petersen, J. (1980). Sire × location interactions from progeny tests in different countries. British Poultry Science 21: 123129.CrossRefGoogle Scholar
Nagaraja, K. V., Emery, D. A., Jordan, K. A., Newman, J. A. and Pomeroy, B. S. (1983). Scanning electron microscopic studies of adverse effects of ammonia on tracheal tissues of turkeys. American Journal of Veterinary Research 44: 15301536.Google ScholarPubMed
Nagaraja, K. V., Emery, D. A., Jordan, K. A., Sivanandran, V., Newman, J. A. and Pomeroy, B. S. (1984). Effect of ammonia on the quantitative clearance of Escherichia coli from lungs, air sacs and livers of turkeys aerosol vaccinated against Escherichia coli. American Journal of Veterinary Research 45: 392395.Google ScholarPubMed
Nair, G., Baggott, G. K. and Davies, C. M. (1983). The effects of a lowered ambient temperature on oxygen consumption and lung ventilation in the perinatal quail (Coturnix c. japonica). Comparative Biochemistry and Physiology 76A: 271277.CrossRefGoogle Scholar
Nakaue, H. S., Koelliker, J. K., Buhler, D. R. and Arscott, G. U. (1981). Distribution of inorganic elements in poultry house dust. Poultry Science 60: 13861391.CrossRefGoogle ScholarPubMed
Nichelmann, M., Ellerkamp, S., Hertrich, I. and Lyhs, L. (1976a). Untersuchungen zum Wärmehaushalt von Puten. 1. Wärmeproduktion. Monatshefte für Veterinärmedizin 32: 213217.Google Scholar
Nichelmann, M., Koch, S., Michler, I., Lyhs, L. and Grosskopf, C. (1976b). Biologisch optimale Temperaturen für Puten. Monatshefte für Veterinärmedizin 31: 773777.Google Scholar
Nichelmann, M., Lyhs, L., Koch, S., Michler, I. and Grosskopf, C. (1977). Zur biologisch optimalen Tempertur bei Moschusenten. Monatshefte für Veterinärmedizin 32: 349353.Google Scholar
Olsen, M. W. and Haynes, S. K. (1948). The effect of different holding temperatures on the hatchability of hens' eggs. Poultry Science 27: 420426.CrossRefGoogle Scholar
O'Neill, S. J. B., Balnave, D. and Jackson, N. (1971). The influence of feathering and environmental temperature on the heat production and efficiency of utilization of metabolizable energy by the mature cockerel. Journal of Agricultural Research, Cambridge 77: 293305.CrossRefGoogle Scholar
Ostrowski-Meissner, H. T. (1981). The physiological and biochemical responses of broilers exposed to short-term thermal stress. Comparative Biochemistry and Physiology 70A: 18.Google Scholar
Ota, H. (1960). Houses and equipment for laying hens. United States Department of Agriculture Miscellaneous Publications 728:Google Scholar
Ouart, M. D. and Adams, A. W. (1982a). Effects of cage design and bird density on layers. 1. Productivity, feathering and nervousness. Poultry Science 61: 16061613.CrossRefGoogle Scholar
Ouart, M. D. and Adams, A. W. (1982b). Effects of cage design and bird density on layers. 2. Bird movement and feeding behavior. Poultry Science 61: 16141620.CrossRefGoogle Scholar
Oyetunde, O. O. F., Thomson, R. G. and Carlson, H. C. (1978). Aerosol exposure of ammonia, dust and Excherichia coli in broiler chickens. Canadian Veterinary Journal 19: 187193.Google Scholar
Paganelli, C. V., Ar, A., Rahn, H. and Wangensteen, O. D. (1975). Diffusion in the gas phase: the effects of ambient pressure and gas composition. Respiration Physiology 25: 247253.CrossRefGoogle ScholarPubMed
Parker, J. E. and McCluskey, W. H. (1964). The effect of the length of daily light periods on the volume and fertilizing capacity of daily light periods on the volume and fertilizing capacity of semen from male chickens. Poultry Science 43: 14011405.CrossRefGoogle Scholar
Parker, J. E. and McCluskey, W. H. (1965). The effect of length of daily light periods on sexual development and subsequent fertilizing capacity of male chickens. Poultry Science 44: 2327.CrossRefGoogle ScholarPubMed
Pasteur, , Joubert, and Chamberland, (1878). Sur le charbon des poules. Compte Rendu Hebdomadaire des Séances de l'Academie des Sciences, Paris 87: 4748.Google Scholar
Payne, C. G. (1965). The influence of environmental temperature on poultry performance. 2nd European Poultry Conference,Bologna 117–120.Google Scholar
Payne, C. G. (1967). The influence of environmental temperature on egg production: a review. In: Environmental Control in Egg Production, pp. 4054. Edit. Carter, T. C.Edinburgh, Oliver and Boyd.Google Scholar
Payne, C. G. (1975). Day-length during rearing and the subsequent egg production of meat-strain pullets. British Poultry Science 16: 559563.CrossRefGoogle Scholar
Pearson, D. P. (1960). Torpidity in birds. In: Mammalian Hibernation, pp. 93103. Edit. Lyman, C. P. and Dawes, A. R.Cambridge, Massachusetts, Museum of Comparative Zoology.Google Scholar
Perry, G. C. (1981). Growth and food intake of broilers under various lighting regimes. British Poultry Science 22: 219225.CrossRefGoogle ScholarPubMed
Prince, R. P., Whitaker, J. H., Matterson, L. D. and Luginbuhl, R. E. (1965). Response of chickens to temperature and relative humidity environments. Poultry Science 44: 7377.CrossRefGoogle ScholarPubMed
Prince, R. P., Whitaker, J. H., Luginbuhl, R. E. and Matterson, L. D. (1967). Response of chickens inoculated with infectious bronchitis virus to temperature and humidity environments. Poultry Science 46: 3540.CrossRefGoogle ScholarPubMed
Proudfoot, F. G. (1964). The effects of plastic packaging and other treatments on hatching eggs. Canadian Journal of Animal Science 44: 8795.CrossRefGoogle Scholar
Proudfoot, F. G. (1969). The handling and storage of hatching eggs. In: The Fertility and Hatchability of the Hen's Egg, pp. 127141. Edit. Carter, T. C. and Freeman, B. M.Edinburgh, Oliver and Boyd Ltd.Google Scholar
Pumphrey, R. J. (1961). Sensory organs: Hearing. In: Biology and Comparative Physiology of Birds. pp. 6986. Edit. Marshall, A. J.New York, Academic Press.CrossRefGoogle Scholar
Quarles, C. L. and Caveny, D. D. (1978). Effect of atmospheric ammonia and stress on broiler males. Poultry Science 57: 1181.Google Scholar
Quarles, C. L. and Kling, H. F. (1974). Evaluation of ammonia and infectious bronchitis vaccination stress on broiler performance and carcass quality. Poultry Science 53: 15921596.CrossRefGoogle Scholar
Rajion, M. A. and Farrell, D. J. (1976). Energy and nitrogen metabolism of diseased chickens: aflatoxicosis. British Poultry Science 17: 7992.CrossRefGoogle ScholarPubMed
Randall, W. C. (1943). Factors influencing the temperature regulation of birds. American Journal of Physiology 139: 5663.CrossRefGoogle Scholar
Reece, F. N., Lott, B. D. and Deaton, J. W. (1980). Ammonia in the atmosphere during brooding affects performance of broiler chickens. Poultry Science 59: 486488.CrossRefGoogle Scholar
Reece, F. N., Lott, B. D. and Deaton, J. W. (1981). Low concentrations of ammonia during brooding decrease broiler weight. Poultry Science 60: 937940.CrossRefGoogle Scholar
Reece, F. N., Lott, B. D. and Deaton, J. W. (1984). The effects of feed form, protein profile, energy level and gender on broiler performance in warm (26.7°C) environments. Poultry Science 63: 19061911.CrossRefGoogle Scholar
Regnier, J. A., Kelley, K. W. and Gaskins, C. T. (1980). Acute thermal stressors and synthesis of antibodies in chickens. Poultry Science 59: 985990.CrossRefGoogle ScholarPubMed
Richards, S. A. (1971). The significance of changes in the temperature of the skin and body core of the chicken in the regulation of heat loss. Journal of Physiology, London 216: 110.CrossRefGoogle ScholarPubMed
Richards, S. A. (1976). Evaporative water loss in domestic fowls and its partitition in relation to ambient temperature. Journal of Agricultural Science, Cambridge 87: 527532.CrossRefGoogle Scholar
Richards, S. A. (1977). The influence of loss of plumage on temperature regulation in laying hens. Journal of Agricultural Science, Cambridge 89: 393398.CrossRefGoogle Scholar
Riesenfeld, G., Berman, A. and Hurwitz, S. (1980). Glucose kinetics and heat production in normothermic, hypothermic and hyperthermic fasted chickens. Comparative Biochemistry and Physiology 67A: 199202.CrossRefGoogle Scholar
Robinson, D. (1979). Effects of cage shape, colony size, floor area and cannibalism preventatives on laying performance. British Poultry Science 20: 345356.CrossRefGoogle Scholar
Robinson, D. and Sheridan, A. K. (1982). Effects of restricted feeding in the growing and laying periods on the performance of White Leghorn by Australorp crossbred and White Leghorn strain cross chickens. British Poultry Science 23: 199214.CrossRefGoogle ScholarPubMed
Romanoff, A. L. (1929). Effect of humidity on the growth, calcium metabolism and mortality of the chick embryo. Journal of Experimental Zoology 54: 343348.CrossRefGoogle Scholar
Romanoff, A. L. (1930). Biochemistry and biophysics of the developing hen's egg. 1. Influence of humidity. Memoirs of the Cornell University Agricultural Experiment station 132: 127.Google Scholar
Romijn, C. (1950). Stoffwisselings onderzoek, bij de kip proeven met Noord-Hollandse Blauwen. 2. Invloed van verschillende factoren op de calorieproductie. Tijdschrift voor Diergeneeskunde 75: 719746.Google Scholar
Romijn, C. and Lokhorst, W. (1961). Climate and poultry. Heat regulation in the fowl. Tijdschrift voor Diergeneeskunde 86: 153172.Google Scholar
Romijn, C. and Lokhorst, W. (1966). Heat regulation and energy metabolism in the domestic fowl. In: Physiology of the Domestic Fowl, pp. 211227. Edit. Horton-Smith, C. and Amoroso, E. C.London, Oliver and Boyd.Google Scholar
Romijn, C. and Vreugdenhil, E. L. (1969). Energy balance and heat regulation in the White Leghorn fowl. Netherlands Journal of Veterinary Science 2: 3258.Google Scholar
Rose, S. P., Bell, M. and Michie, W. (1985). Comparison of artificial light sources and lighting programmes for laying hens on long ahemeral light cycles. British Poultry Science 26: 357365.CrossRefGoogle ScholarPubMed
Sagher, B. M. (1975). The effect of cold stress on muscle growth in young chicks. Growth 39: 281288.Google ScholarPubMed
Savory, C. J. (1976). Effects of different lighting regimes on diurnal feeding patterns of the domestic fowl. British Poultry Science 17: 341350.CrossRefGoogle Scholar
Scott, N. R. and Van Tienhoven, A. (1971). Simultaneous measurement of hypothalamic and body temperatures and heart rate of poultry. Transactions of the American Society of Agricultural Engineers 14: 10271033.Google Scholar
Shutze, J. V., Lauber, J. K., Kato, M. and Wilson, W. (1962). Influence of incandescent and coloured light on chicken embryos during incubation. Nature, London 96: 593595.Google Scholar
Siegel, H. S. and Drury, L. N. (1968a). Physiological responses of chickens to variations in air temperature and velocity. Poultry Science 47: 11201127.CrossRefGoogle ScholarPubMed
Siegel, H. S. and Drury, L. N. (1968b). Physiological responses to high lethal temperature and air velocity in the young fowl. Poultry Science 47: 12301235.CrossRefGoogle ScholarPubMed
Siegel, H. S. and Gross, W. B. (1965). Social grouping, stress and resistance to coliform infection in cockerels. Poultry Science 44: 15301536.CrossRefGoogle ScholarPubMed
Siegel, H. S., Beane, W. L. and Howes, C. E. (1963). Lighting regimes as an influence on immature and mature body weights of Leghorn type layers. Poultry Science 42: 13591368.CrossRefGoogle Scholar
Siegel, P. B., Isakson, S. T., Coleman, F. N. and Hoffman, B. J. (1969). Photoacceleration of development in chick embryos. Comparative Biochemistry and Physiology 24: 753758.CrossRefGoogle Scholar
Simensen, E., Olson, L. D. and Hahn, G. L. (1980). Effects of high and low environmental temperatures on clinical course of fowl cholera in turkeys. Avian Diseases 24: 816832.CrossRefGoogle ScholarPubMed
Skoglund, W. C. and Palmer, D. H. (1962). Light intensity studies with broilers. Poultry Science 41: 18391842.CrossRefGoogle Scholar
Slavik, M. F., Skeeles, J. K., Beasley, J. N., Harris, G. C., Roblee, P. and Hellwig, D. (1981). Effect of humidity on infection of turkeys with Alcaligenes faecalis. Avian Diseases 25: 936942.CrossRefGoogle ScholarPubMed
Smith, A. H. and Abbott, U. K. (1961). Adaptation of the domestic fowl to high altitude. Poultry Science 40: 1459.Google Scholar
Smith, A. H., Abplanalp, H., Harwood, L. M. and Kelly, C. (1959). Poultry at high altitude. Californian Agriculture 13: 89.Google Scholar
Smith, A. J. and Wells, J. W. (1978). The source of androgenic activity in the African wood, Funtumia latifolia: a steroid hormone formed by the action of Fusarium solani. Journal of the Science of Food and Agriculture 29: 783787.CrossRefGoogle ScholarPubMed
Smith, W. K. (1981). Poultry housing problems in the tropics and subtropics. In: Environmental Aspects of Housing for Animal Production, pp. 235258. Edit. Clarke, J. A.London, Butterworths.CrossRefGoogle Scholar
Steen, J. and Enger, P. S. (1957). Muscular heat production in pigeons during exposure to cold. American Journal of Physiology 191: 157158.CrossRefGoogle ScholarPubMed
Rao, Subba D. S. V. and Glick, B. (1976). Immune response of chickens in the presence of altered environment. Poultry Science 55: 1604.Google Scholar
Taminie, H. S. and Fox, M. W. (1967). Effect of continuous and intermittent light exposure on the embryonic development of chickens eggs. Compartive Biochemistry and Physiology 20: 793799.CrossRefGoogle Scholar
Tasaki, I. and Sasa, Y. (1970). Energy metabolism in laying hens. In: Energy Metabolism in Farm Animals, pp. 197200. Edit. Schurch, A. and Wenk, C.Zurich, Juris Drenk Verlag.Google Scholar
Tasaki, I. and Sakurai, H. (1969). Studies on the energy metabolism in the fowl. Memoir of the Laboratory of Animal Nutrition, Nagoya University 4.Google Scholar
Temple, W., Foster, T. M. and O'Donnell, C. S. (1984). Behavioural estimates of auditory thresholds in hens. British Poultry Science 25: 487493.CrossRefGoogle ScholarPubMed
Thaxton, P., Wyatt, R. D. and Hamilton, P. B. (1974). The effect of environmental temperature on parathyroid infection in the neo-natal chickens. Poultry Science 53: 8894.CrossRefGoogle Scholar
Thelin, A., Tegler, Ö. and Rylander, R. (1984). Lung reactions during poultry handling related to dust and bacterial endotoxin levels. European Journal of Respiratory Diseases 65: 266271.Google ScholarPubMed
Tojo, H. and Huston, T. M. (1980). Effects of environmental temperature on the concentration of serum estradiol, progesterone and calcium in maturing female domestic fowl. Poultry Science 59: 27972802.CrossRefGoogle ScholarPubMed
Townsley, T. S. (1930). Humidity in incubation. Bulletin of the Alabama Polytechnic Institute 25: 5660.Google Scholar
Tullett, S. G., MacLeod, M. G. and Jewitt, T. R. (1980). The effect of partial defeathering on energy metabolism in the laying fowl. British Poultry Science 21: 241245.CrossRefGoogle ScholarPubMed
Valentine, H. (1964). A study on the effect of different ventilation rates on the ammonia concentrations in the atmosphere of broiler houses. British Poultry Science 5: 149159.CrossRefGoogle Scholar
Van Kampen, M. (1971). Some aspects of thermoregulation in the White Leghorn fowl. International Journal of Biometeorology 15: 244246.CrossRefGoogle ScholarPubMed
Van Kampen, M. (1974). Physical factors affecting energy expenditure. In: Energy Requirements of Poultry, pp. 4759. Edit. Morris, T. R. and Freeman, B. M.Edinburgh, British Poultry Science Ltd.Google Scholar
Van Kampen, M. (1976). Activity and energy expenditure in laying hens. I. The energy cost of nesting activity and oviposition. Journal of Agricultural Science, Cambridge 86: 471473.CrossRefGoogle Scholar
Van Kampen, M. and Romijn, C. (1970). Energy balance and heat regulation in the White Leghorn fowl. In: Energy Metabolism of Farm Animals, pp. 213216. Edit. Schurch, A. and Wenk, C.Zurich, Druck.Google Scholar
Visschedijk, A. H. J. and Rahn, H. (1981). Incubation of chicken eggs at altitude: theoretical consideration of optimal gas composition. British Poultry Science 22: 451460.CrossRefGoogle Scholar
Waldroup, P. W. (1982). Influence of environmental temperature on protein and amino acid needs of poultry. Federation Proceedings, Federation of American Societies for Experimental Biology 41: 28212823.Google ScholarPubMed
Walker, T. R. and Farrell, D. J. (1976). Energy and nitrogen metabolism of diseased chickens: interaction of Ascaridia galli infestation and vitamin A status. British Poultry Science 17: 6777.CrossRefGoogle ScholarPubMed
Wallis, I. R. and Balnave, D. (1984). The influence of environmental temperature, age and sex on digestibility of amino acids in growing broiler chickens. British Poultry Science 25: 401407.CrossRefGoogle ScholarPubMed
Walter, J. H. and Voitle, R. A. (1973). Effects of photoperiod during incubation on embryonic and post-embryonic development of quail and chickens. British Poultry Science 14: 533540.CrossRefGoogle ScholarPubMed
Wangensteen, O. D., Rahn, H., Burton, R. R. and Smith, A. H. (1974). Respiratory gas exchange of high altitude adapted chicken embryos. Respiration Physiology 21: 6170.CrossRefGoogle Scholar
Waring, J. J. and Brown, W. O. (1965). A respiration chamber for the study of energy utilization for maintenance and production in the laying hen. Journal of Agricultural Science, Cambridge 65: 139146.CrossRefGoogle Scholar
Waring, J. J. and Brown, W. O. (1967). Calorimetric studies on the utilization of dietary energy by the laying White Leghorn hen in relation to plane of nutrition and environmental temperature. Journal of Agricultural Science, Cambridge 68: 149155.CrossRefGoogle Scholar
Webb, M. L. and Mashaly, M. M. (1984). Effect of adaptation to handling on the circulating corticosterone concentration of laying hens. British Poultry Science 25: 425427.CrossRefGoogle ScholarPubMed
Wekstein, D. R. and Zolman, J. F. (1969). Ontogeny of heat production in chicks. Federation Proceedings, Federation of the American Societies for Experimental Biology 28: 10231028.Google ScholarPubMed
Wells, R. G. (1971). A comparison of red and white light and high and low density protein regimes for growing pullets. British Poultry Science 12: 313325.CrossRefGoogle Scholar
Whitehead, C. C. (1984). Biotin intake and transfer to the egg and chick in broiler breeder hens housed on litter or in cages. British Poultry Science 25: 287292.CrossRefGoogle Scholar
Whitehead, C. C. and Bannister, D. W. (1980). Biotin status, blood pyruvate carboxylase (EC 6.4.1.1.) activity and performance in broilers under different conditions of bird husbandry and diet processing. British Journal of Nutrition 43: 541549.CrossRefGoogle ScholarPubMed
Wildenhahn, V., Graul, C., Lyhs, L. and Lohse, W. (1976). Der Einfluss von Geräuschen auf physiologische Funktionen beim Huhn. 1. Mitteilung: Der Einfluss erstmalig einwerkende starkerer Geräusche auf den 11-OHKS-Speigel von Broilern und weissen Leghornhennen. Archiv für Experimentelle Veterinärmedizin 30: 633641.Google Scholar
Wilgus, H. S. and Sadler, W. W. (1954). Incubation factors affecting hatchability of poultry eggs. 1. Levels of oxygen and carbon dioxide at high altitudes. Poultry Science 33: 460471.CrossRefGoogle Scholar
Williamson, R. A., Misson, B. H. and Davison, T. F. (1985). The effect of exposure to 40° on the heat production and the serum concentrations of triiodothyronine, thyroxine and corticosterone in immature domestic fowl. General and Comparative Endocrinology 60: 178186.CrossRefGoogle ScholarPubMed
Wilson, W. O. and Woodard, A. E. (1958). Egg production of chickens kept in darkness. Poultry Science 37: 10541057.CrossRefGoogle Scholar
Winn, P. N. and Godfrey, E. F. (1967). The effect of humidity on growth and feed consumption of broiler chicks. International Journal of Biometeorology 11: 3950.CrossRefGoogle Scholar
Wolfenson, D., Frei, Y. F., Snapir, N. and Berman, A. (1979). Effect of diurnal heat stress on egg formation. British Poultry Science 20: 167174.CrossRefGoogle ScholarPubMed
Wyatt, R. D., Huston, T. M. and Lockhart, W. C. (1976). Effect of acclimation to various environmental temperatures on acute aflatoxicosis in broiler chickens. Poultry Science 55: 2108.Google Scholar