Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T06:43:09.602Z Has data issue: false hasContentIssue false

Flexible substrate technology for millimeter wave wireless power transmission

Published online by Cambridge University Press:  06 April 2016

Zhening Yang
Affiliation:
CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France. Phone: +33 5 61 33 63 79 Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
Alexandru Takacs
Affiliation:
CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France. Phone: +33 5 61 33 63 79 Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France
Samuel Charlot
Affiliation:
CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France. Phone: +33 5 61 33 63 79
Daniela Dragomirescu*
Affiliation:
CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France. Phone: +33 5 61 33 63 79 Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
*
Corresponding author:D. Dragomirescu Email: [email protected]
Get access

Abstract

In this paper, a technology based on thin flexible polyimide substrate (Kapton) to develop antennas for millimeter wave wireless power transmission is presented. Firstly, we characterize the Kapton polyimide (relative permittivity and loss tangent) using a ring resonator method up to V band. A 60 GHz patch antenna is designed, fabricated, and measured to validate our technology. Crossed-dipoles array antennas at Ku band and K band for energy harvesting are also designed, fabricated, and measured. Then a prototype of crossed-slot dipole antenna at V band is proposed. Finally, a resistivity characterization of Au bump used in flip-chip packaging is done, which leads us one step further toward aheterogeneous integration on flexible substrate of different components for Wireless Sensor Network nodes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Wong, W.S.; Salleo, A.: Flexible Electronics: Materials and Applications, Springer Publishing Company, Incorporated, New York, NY, USA, 2009.Google Scholar
[2]Toray Research Center, Inc: Printing Technology for Flexible Substrates, InterLingua Publishing, Redondo Beach, CA, USA, 2006.Google Scholar
[3]Hettak, K.; Petosa, A.; James, R.: Flexible plastic-based inkjet printed CPW fed dipole antenna for 60 GHz ISM applications, in Antennas and Propagation Society Int. Symp., 2014, 328329.CrossRefGoogle Scholar
[4]Bisognin, A. et al. : Inkjet coplanar square monopole on flexible substrate for 60-GHz applications. IEEE Antennas Wireless Propag. Lett., 13 (2014), 435438.CrossRefGoogle Scholar
[5]Shaker, G.; Safavi-Naeini, S.; Sangary, N.; Tentzeris, M.M.: Inkjet printing of ultrawideband (UWB) antennas on paper-based substrates. IEEE Antennas Wireless Propag. Lett., 10 (2011), 111114.Google Scholar
[6]Vyas, R.; Rida, A.; Bhattacharya, S.; Tentzeris, M.M.: Liquid Crystal Polymer (LCP): The ultimate solution for low-cost RF flexible electronics and antennas, in Antennas and Propagation Society Int. Symp., 2007, 17291732.Google Scholar
[7]Swaisaenyakorn, S.; Young, P.R.; Shkunov, M.: Characterization of ink-jet printed CPW on Kapton substrates at 60 GHz, in Antennas and Propagation Conf. LAPC, Loughborough, 2014, 676678.Google Scholar
[8]Belhaj, M.M.; Wei, W.; Pallecchi, E.; Mismer, C.; Roch-jeune, I.; Happy, H.: Inkjet printed flexible transmission lines for high frequency applications up to 67 GHz, in European Microwave Conf., EuMC, 2014, 15281531.CrossRefGoogle Scholar
[9]Singh, M.; Haverinen, H.M.; Dhagat, P.; Jabbour, G.E.: Inkjet printing—process and its applications. Adv. Mater., 22 (6) (2010), 673685.Google Scholar
[10]Ahmed, S.; Tahir, F.A.; Shamim, A.; Cheema, H.M.: A compact Kapton-based inkjet printed multiband antenna for flexible wireless devices. IEEE Antennas Wireless Propag. Lett., 99 (2015), 11.Google Scholar
[11]Aziz, M.A.; Roy, S.; Berge, L.A.; Irfanullah, I.; Nariyal, S.; Braaten, B.D.: A conformal CPW folded slot antenna array printed on a Kapton substrate. Antennas Propag. EUCAP, (2012), 159162.Google Scholar
[12]Chauraya, A. et al. : Inkjet printed dipole antennas on textiles for wearable communications, Microwaves. IET Antennas Propag., 7 (9) (2013), 760767.Google Scholar
[13]Jatlaoui, M.M.; Dragomirescu, D.; Charlot, S.; Pons, P.; Aubert, H.; Plana, R.: 3D heterogeneous integration of wireless communicating nano-sensors on flexible substrate, in Proc. SPIE 7821, Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies, 2010.CrossRefGoogle Scholar
[14]Thompson, D.; Tantot, O.; Jallageas, H.; Ponchak, G.E.; Tentzeris, M.M.; Papapolymerou, J.: Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz. IEEE Trans. Microw. Theory Tech., 52 (4) (2004), 13431352.Google Scholar
[15]Takacs, A.; Aubert, H.; Fredon, S.; Despoisse, L.: Design and characterization of effective antennas for K-band rectennas, in Antennas and Propagation EUCAP, 2015, 14.Google Scholar
[16]Jatlaoui, M.M. et al. : Wireless communicating nodes at 60 GHz integrated on flexible substrate for short-distance instrumentation in aeronautics and space. Int. J. Microw. Wireless Technol., 4 (2012), 109117.Google Scholar