Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-29T12:10:55.306Z Has data issue: false hasContentIssue false

A comparison on simulated, analytic, and measured impedance values for an inductive power transfer system

Published online by Cambridge University Press:  19 February 2020

Marius Hassler*
Affiliation:
BMW Group, 80788Munich, Germany Technical University of Munich, Arcisstr. 21, 80333Munich, Germany
Oguz Atasoy
Affiliation:
WiTricity Corporation, MA02472Watertown, USA
Karl Twelker
Affiliation:
WiTricity Corporation, MA02472Watertown, USA
Morris Kesler
Affiliation:
WiTricity Corporation, MA02472Watertown, USA
Johannes Birkendahl
Affiliation:
Technical University of Munich, Arcisstr. 21, 80333Munich, Germany
Josef Krammer
Affiliation:
BMW Group, 80788Munich, Germany
*
Author for correspondence: Marius Hassler, BMW Group, 80788Munich, Germany. E-mail: [email protected]
Get access

Abstract

Studies on inductive power transfer (IPT) systems are most times either theoretical or experimental. In this paper, we want to bring theoretical models and experimental data together using the impedance based interface proposed in SAE J2954. This proposal characterizes the IPT system by impedances at both coil terminals. We show how the experimental data was retrieved at the interface and use it to validate an analytical model and a Simulink model described within this study. Such models can support the design and development process and therefore a comparison with reality is necessary.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Preuss, S. Daimler plant CO2-Wende: Bis 2030 soll jeder zweite Mercedes elektrisch sein, FAZ.NET, [Online]. Available at https://www.faz.net/aktuell/wirtschaft/auto-verkehr/daimler-bis-2030-soll-jeder-zweite-mercedes-elektrisch-sein-16184951.html. (Accessed 14 June 2019).Google Scholar
Kreimeier, N. Dr. Volks und Mr. Wagen, Capital.de, [Online]. Available at https://www.capital.de/wirtschaft-politik/dr-volks-und-mr-wagen. Accessed 12 June 2019).Google Scholar
Freitag, M. Porsche plant mit Elektroanteil von 50 Prozent schon in sechs Jahren, manager magazin, [Online]. Available at https://www.manager-magazin.de/unternehmen/autoindustrie/porsche-jedes-zweite-fahrzeug-soll-bald-elektroauto-sein-a-1153417.html. (Accessed 12 June 2019).Google Scholar
U.S. Department of Transportation: 2009 National Household Travel Survey, 2009.Google Scholar
Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles and Alignment Methodology, SAE J2954 RP, 2017.Google Scholar
Hassler, M, Niedermeier, F, Krammer, J and Diepold, K (2018) A Method for Interoperable Interface Description of Inductive Power Transfer Systems, 2018 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (Wow), Montréal (Canada).CrossRefGoogle Scholar
Hassler, M, Atasoy, O, Kesler, M, Twelker, K, Achatz, T, Jetz, M and Krammer, J (2019) Impedance Measurement on Inductive Power Transfer Systems, 2019 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (Wow), London (GB).CrossRefGoogle Scholar
Auvigne, CB (2015) Electrical and Magnetical Modeling of Inductive Coupled Power Transfer Systems, EPFL.Google Scholar
Cirimele, V (2017) Projet et intégration d'un système de transfert inductif pour les applications automobiles.Google Scholar
Esteban, B, Sid-Ahmed, M and Kar, NC (2015) A comparative study of power supply architectures in wireless EV charging systems. IEEE Transactions on Power Electronics 30, 64086422.CrossRefGoogle Scholar
Niedermeier, F (2019) Methoden zur Analyse von induktiven Ladesystemen für Elektro- und Hybridfahrzeuge.Google Scholar
Kürschner, D and Rathge, C (2008) Contactless energy transmission systems with improved coil positioning flexibility for high power applications, 2008 IEEE Power Electronics Specialists Conference, Rhodes (Greece).CrossRefGoogle Scholar
Steigerwald, RL (1988) A comparison of half-bridge resonant converter topologies. IEEE Transactions on Power Electronics 3, 174182.CrossRefGoogle Scholar
Unbehauen, R (1994) Grundlagen der Elektrotechnik – Allgemeine Grundlagen, Lineare Netzwerke, Stationäres Verhalten. Heidelberg, Berlin: Springer.Google Scholar
Gupta, SV (2012) Measurement Uncertainties: Physical Parameters and Calibration of Instruments. Heidelberg, Berlin: Springer.CrossRefGoogle Scholar