Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T10:26:02.689Z Has data issue: false hasContentIssue false

Response of Seven Peanut (Arachis hypogaea) Cultivars to Sulfentrazone

Published online by Cambridge University Press:  20 January 2017

Timothy L. Grey*
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Georgia Experiment Station, 1109 Experiment Street, Griffin, GA 30223
David C. Bridges
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Georgia Experiment Station, 1109 Experiment Street, Griffin, GA 30223
Barry J. Brecke
Affiliation:
West Florida Research and Education Center, University of Florida, 4253 Experiment Drive, Jay, FL 32565
*
Corresponding author's E-mail: [email protected].

Abstract

Field studies were conducted to evaluate the tolerance of peanut cultivars ‘Florunner’, ‘Georgia Green’, ‘Sunoleic 95R’, ‘AgriTech GK7’, ‘NC-7’, ‘ViruGard’, and ‘Spanco’ to sulfentraone. Herbicide treatments included sulfentrazone applied as a single treatment preemergence (PRE) at 0.14, 0.21, 0.28, 0.35, or 0.42 kg ai/ha or as a PRE followed by (fb) an at cracking (AC) application (0.14 kg ai/ha PRE fb 0.14 kg ai/ha AC, 0.21 kg ai/ha PRE fb 0.14 kg ai/ha AC, 0.21 kg ai/ha PRE fb 0.21 kg ai/ha AC, 0.28 kg ai/ha PRE fb 0.07 kg ai/ha AC, or 0.28 kg ai/ha PRE fb 0.14 kg ai/ha AC). Imazapic and paraquat applied early postemergence (EPOT) were included along with a weed-free control. NC-7 exhibited higher early-season injury (ranging from 1 to 29%) than other cultivars across all sulfentrazone applications. However, this injury did not affect yield when compared with the untreated weed-free check. Overall, peanut tolerance to sulfentrazone was high across all varieties.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahrens, W. H., ed. 1994. Herbicide Handbook. 7th ed. Champaign, IL: Weed Science Society of America. 352 p.Google Scholar
Beste, C. E. 1996. Lima bean tolerance to fomesafen and sulfentrazone. Proc. Northeast. Weed Sci. Soc. 50: 129133.Google Scholar
Branch, W. D. 1996. Registration of ‘Georgia Green’ peanut. Crop Sci. 36: 806.CrossRefGoogle Scholar
Cardina, J. and Brecke, B. J. 1991. Florida beggarweed (Desmodium tortuosum) growth and development in peanuts (Arachis hypogaea). Weed Technol. 5: 147153.CrossRefGoogle Scholar
Colvin, D. L. and Brecke, B. J. 1988. Peanut yield and weed control as affected by timing and application rate of chlorimuron. Proc. South. Weed Sci. Soc. 41:60.Google Scholar
Dayan, F. E., Weete, J. D., Duke, S. O., and Hancock, H. G. 1997. Soybean (Glycine max) cultivar differences in response to sulfentrazone. Weed Sci. 45: 634641.Google Scholar
Dowler, C. C. 1998. Weed survey-southern states. Proc. South. Weed Sci. Soc. 51:304.Google Scholar
Gorbet, D. W. and Knauft, D. A. 1997. Registration of ‘SunOleic 95R’ peanut. Crop Sci. 37:1392.CrossRefGoogle Scholar
Grey, T. L., Walker, R. H., Wehtje, G. R., and Hancock, H. G. 1997. Sulfentrazone adsorption and mobility as affected by soil and pH. Weed Sci. 45: 733738.Google Scholar
Grichar, W. J. 1997. Influence of herbicides and timing of application on broadleaf weed control in peanut (Arachis hypogaea). Weed Technol. 11: 708713.CrossRefGoogle Scholar
Grichar, W. J. and Nester, P. R. 1997. Nutsedge (Cyperus spp.) control in peanut (Arachis hypogaea) with AC 263,222 and imazethapyr. Weed Technol. 11: 714719.CrossRefGoogle Scholar
Hancock, H. G. 1992. Weed spectrum of F6285 in soybeans. Proc. South. Weed Sci. Soc. 45:49.Google Scholar
Hancock, H. G. 1998. Spartan DF performance in tobacco. Proc. South. Weed Sci. Soc. 51:34.Google Scholar
Hatzios, K. K. 1998. Herbicide Handbook. Supplement to the 7th edition. Champaign, IL: Weed Science Society of America. 104 p.Google Scholar
Johnson, W. C. III, Holbrook, C. C., Mullinix, B. G. Jr., and Cardina, J. 1992a. Response of eight genetically diverse peanut genotypes to chlorimuron. Peanut Sci. 19: 111115.CrossRefGoogle Scholar
Johnson, W. C. III, Mullinix, B. G. Jr., and Brown, S. M. 1992b. Phytotoxicity of chlorimuron and tank mixtures on peanut (Arachis hypogaea). Weed Technol. 6: 404408.CrossRefGoogle Scholar
Johnson, W. C. III, Colvin, D. L., and Mullinix, B. G. Jr. 1993. Comparative response of three peanut cultivars to multiple herbicide applications. Peanut Sci. 20: 1720.CrossRefGoogle Scholar
Kirby, J. S., Banks, D. J., and Sholar, J. R. 1989. Registration of ‘Spanco’ peanut. Crop Sci. 29: 15731574.CrossRefGoogle Scholar
Krausz, R. F., Kapusta, G., and Matthews, J. L. 1998. Sulfentrazone for weed control in soybean (Glycine max). Weed Technol. 12: 684689.CrossRefGoogle Scholar
Niekamp, J. W., Johnson, W. G., and Smeda, R. J. 1999. Broadleaf weed control with sulfentrazone and flumioxazin in no-tillage soybean (Glycine max). Weed Technol. 13: 233238.CrossRefGoogle Scholar
Norden, A. J., Lipscomb, R. W., and Carver, W. A. 1969. Registration of ‘Florunner’ peanuts. Crop Sci. 9:850.CrossRefGoogle Scholar
Retzinger, E. J. Jr. and Mallory-Smith, C. M. 1997. Classification of herbicides by site of action for weed resistance management strategies. Weed Technol. 11: 384391.CrossRefGoogle Scholar
Richburg, J. S. III, Wilcut, J. W., Culbreath, A. K., and Kvien, C. K. 1995. Response of eight peanut (Arachis hypogaea L.) cultivars to the herbicide AC 263,222. Peanut Sci. 22: 7680.CrossRefGoogle Scholar
Schmidt, D. H., Vogt, M. D., DeFelice, F. S., Steiger, D. K., Morelock, G. L., Lubich, G. A., Millard, B. R., Hicks, J. D., and Handley, P. W. 1998. Response of soybean genotypes to sulfentrazone. Proc. South. Weed Sci. Soc. 51:4.Google Scholar
Sholar, J. R., Mozingo, R. W., and Beasley, J. P. Jr. 1995. Peanut cultural practices. In Pattee, H. E. and Stalker, H. T., eds. Advances in Peanut Science. Stillwater, OK: American Peanut Research and Education Society. pp 354-382.Google Scholar
Sims, G. R., Wehtje, G. R., McGuire, J. A., and Hicks, T. V. 1987. Weed control and response of peanuts (Arachis hypogaea) to chlorimuron. Peanut Sci. 14: 4245.CrossRefGoogle Scholar
Swanteck, J. M., Sneller, C. H., and Oliver, L. R. 1998. Evaluation of soybean injury from sulfentrazone and inheritance of tolerence. Weed Sci. 46: 271277.CrossRefGoogle Scholar
Vidrine, P. R., Griffin, J. L., Jordan, D. L., and Reynolds, D. B. 1996. Broadleaf weed control in soybean (Glycine max) with sulfentrazone. Weed Technol. 10: 762765.CrossRefGoogle Scholar
Walker, E. R., Mueller, T. C., Rhodes, G. N. Jr., Hayes, R. M. 1998. Spartan for weed control in tobacco. Proc. South. Weed Sci. Soc. 51:32.Google Scholar
Walker, R. H. 1994. F-6285 applied postemergence in soybean. Proc. South. Weed Sci. Soc. 47:64.Google Scholar
Webster, T. M., Wilcut, J. W., and Coble, H. D. 1997. Influence of AC 263,222 rate and application method on weed management in peanut (Arachis hypogaea). Weed Technol. 11: 520526.CrossRefGoogle Scholar
Wehtje, G. R., Walker, R. H., Grey, T. L., and Hancock, H. G. 1997. Response of purple (Cyperus rotundus) and yellow nutsedges (C. esculentus) to selective placement of sulfentrazone. Weed Sci. 45: 382387.CrossRefGoogle Scholar
Wells, J. J. and Talbert, R. E. 1998. Cultivar tolerance of southern pea (Vigna sinensis) to sulfentrazone. Proc. South. Weed Sci. Soc. 51:264.Google Scholar
Wilcut, J. W., York, A. C., Grichar, W. J., and Wehtje, G. R. 1995. The biology and management of weeds in peanut (Arachis hypogaea). In Pattee, H. E. and Stalker, H. T., eds. Advances in Peanut Science. Stillwater, OK: American Peanut Research and Education Society. pp. 207244.Google Scholar
Wynne, J. C., Mozingo, R. W., and Emry, E. A. 1979. Registration of ‘NC 7’ peanut. Crop Sci. 19:563.CrossRefGoogle Scholar
Zhaohu, L., Walker, R. H., and Wehtje, G. R. 1997. Laboratory studies for predicting response of soybean cultivars to sulfentrazone. Proc. South. Weed Sci. Soc. 50: 177178.Google Scholar