Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T14:12:46.470Z Has data issue: false hasContentIssue false

Influence of Increasing Common Ragweed (Ambrosia artemisiifolia) or Common Cocklebur (Xanthium strumarium) Densities on Forage Nutritive Value and Yield in Tall Fescue Pastures and Hay Fields

Published online by Cambridge University Press:  20 January 2017

Kristin K. Rosenbaum
Affiliation:
Division of Plant Sciences, University of Missouri, Columbia, MO 65211
K. W. Bradley*
Affiliation:
Division of Plant Sciences, University of Missouri, Columbia, MO 65211
Craig A. Roberts
Affiliation:
Division of Plant Sciences, University of Missouri, Columbia, MO 65211
*
Corresponding author's E-mail: [email protected].

Abstract

Separate field trials were conducted in 2007 and 2008 to investigate the effects of increasing densities of common ragweed or common cocklebur on total yield and forage nutritive values in tall fescue pastures. Common ragweed densities ranged from 0 to 188 plants m−2, and common cocklebur densities ranged from 0 to 134 plants m−2. Total biomass yields (weeds plus tall fescue) were determined in response to each weed density and species; pure samples of tall fescue, common ragweed, or common cocklebur were also hand collected from each plot at the time of the total biomass harvest. Near-infrared spectroscopy was used to predict crude protein (CP) concentration and in vitro true digestibility (IVTD) of the total harvested biomass, pure tall fescue, and pure weed species in each plot. Results indicate that biomass yields may increase by as much as 5 kg ha−1 with each additional common ragweed plant m−2 within a tall fescue stand. Additionally, CP concentration of the total harvested biomass, pure weed species, and tall fescue decreased by 0.2 to 0.4 g kg−1 with each additional increase in common ragweed or common cocklebur plant per m−2. As weed densities increased, IVTD of pure tall fescue samples increased only minimally (0.04%), regardless of the weed species. An increase in common ragweed density also resulted in the CP concentration of pure samples of common ragweed to decrease by 0.2 g kg−1 for each additional plant per m2 and by 0.4 g kg−1 for each additional common cocklebur per m2. Overall, results from these experiments indicate that plant biomass yield and nutritive values of the total harvested biomass are only marginally influenced by increasing common ragweed or common cocklebur densities.

Se efectuaron estudios de campo independientes en 2007 y 2008 para investigar los efectos de incrementos en las densidades de Ambrosia artemisiifolia o Xanthium strumarium en el rendimiento total y el valor nutritivo del forraje en pastizales de Festuca arundinacea. Las densidades de A. artemisiifolia variaron de 0 a 188 plantas m−2 y las de X. strumarium variaron de 0 a 134 plantas m−2. El rendimiento de biomasa total (malezas más F. arundinacea) se determinó en respuesta a la densidad de cada maleza y especie; muestras puras de F. arundinacea, A. artemisiifolia o X. strumarium se recolectaron manualmente en cada parcela al momento de la cosecha de la biomasa total. Se utilizó espectroscopia NIR para predecir la concentración de proteína cruda (CP) y la digestibilidad verdadera in vitro (IVTD) de la biomasa total cosechada, de F. arundinacea pura y de las muestras puras de maleza recolectadas en cada parcela. Los resultados indican que los rendimientos de la biomasa pueden incrementarse hasta 5 kg ha−1 con cada planta adicional de A. artemisiifolia por m2 dentro de una plantación de F. arundinacea. Adicionalmente, la concentración CP de la biomasa total cosechada, de las especies puras de maleza y de F. arundinacea disminuyó de 0.2 a 0.4 g kg−1, con cada planta adicional de A. artemisiifolia o X. strumarium por m2. Al incrementarse las densidades de la maleza, la IVTD de las muestras puras de F. arundinacea aumentó mínimamente (0.04%), sin importar la especie de maleza. Un incremento en la densidad de A. artemisiifolia también resultó en una reducción de 0.2 g kg−1en la concentración CP de muestras puras de la misma maleza, por cada planta adicional por m2 y por 0.4 g kg−1, por cada planta adicional de X. strumarium por m2. En general, los resultados de estos experimentos indican que el rendimiento y los valores nutritivos del total de la biomasa cosechada son solo marginalmente influenciados por el incremento en las densidades de A. artemisiifolia o X. strumarium.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Angima, S. 2007. Fertilizing for hay production. http://smallfarms.oregonstate.edu/sfn/spg07ferthay. Accessed: April 1, 2010.Google Scholar
Ball, D. M., Collins, M., Lacefield, G. D., Marten, N. P., Mertens, D. A., Olson, K. E., Putnam, D. H., Undersander, D. J., and Wolf, M. W. 2001. Understanding Forage Quality. Park Ridge, IL: American Farm Bureau Federation Publication 1-01.Google Scholar
Bergen, P., Moyer, J. R., and Kozub, G. C. 1990. Dandelion (Taraxacum officinale) use by cattle grazing on irrigated pasture. Weed Technol 4:258263.Google Scholar
Bosworth, S. C., Hoveland, C. S., and Buchanan, G. A. 1985. Forage quality of selected cool-season weed species. Weed Sci 34:150154.Google Scholar
Bosworth, S. C., Hoveland, C. S., Buchanan, G. A., and Anthony, W. B. 1980. Forage quality of selected warm-season weed species. Agron. J. 72:10501054.Google Scholar
Bovey, R. W. 1987. Weed control problems, approaches, and opportunities in rangeland. Weed Sci 3:5791.Google Scholar
Buxton, D. R., Mertens, D. R., and Moore, K. J. 1995. Forage quality for ruminants: plant and animal considerations. Prof. Anim. Sci 11:121131.Google Scholar
Coble, H. D., Williams, F. M., and Ritter, R. L. 1981. Common ragweed (Ambrosia artemisiifolia) interference in soybean (Glycine max). Weed Sci 29:339342.Google Scholar
Fairbairn, C. B. and Thomas, B. 1959. The potential nutritive value of some weeds common to northeastern England. J. Br. Grasslands Soc 14:3646.Google Scholar
Green, J. D. and Martin, J. R. 1998. Weed management in grass pastures, hayfields, and fencerows. Lexington, KY: University of Kentucky Extension AGR-112.Google Scholar
Grekul, C. W. and Bork, E. W. 2004. Herbage yield losses in perennial pasture due to Canada thistle (Cirsium arvense). Weed Technol 18:784794.Google Scholar
Hodgson, G. L. and Blackman, G. E. 1957. An analysis of the influence of plant density on the growth of Vicia faba. II. The significance of competition for light in relation to plant development at different densities. J. Exp. Bot 8:195219. In R. L. Zimdahl, Weed Crop Competition: A Review. 1980. Corvallis, OR: International Plant Protection Center, Oregon State University.Google Scholar
Hoveland, C. S., Buchanan, G. A., Bosworth, S. C., and Bailey, I. J. 1986. Forage nutritive quality of weeds in Alabama. Auburn, AL: Auburn University.Google Scholar
Kallenbach, R. L. 2010. Nip Seedheads Early to Cut July Mowing. http://extension.missouri.edu/news/DisplayStory.aspx?N=812. Accessed: August 13, 2010.Google Scholar
Lym, R. G. and Messersmith, C. G. 1985. Leafy spurge control and improved forage production with herbicides. J. Range Manag 38:386391.Google Scholar
Marten, G. C. and Anderson, R. N. 1975. Forage nutritive value and palatability of 12 common annual weeds. Crop Sci 15:821827.Google Scholar
Marten, G. C., Sheaffer, C. C., and Wyse, D. L. 1987. Forage nutritive value and palatability of perennial weeds. Agron. J. 79:980986.Google Scholar
Mitich, L. 1979. Ragweed, Intriguing World of Weeds. Weeds Today 10:21.Google Scholar
Mitich, L. 1987. Cockleburs, Intriguing World of Weeds. Weed Technol 1:359360.Google Scholar
Moyer, J. R. 1984. Yield and nutrient composition of orchardgrass hay as affected by dandelion control. Can. J. Plant Sci 64:295302.Google Scholar
Mueller-Warrant, G. W. and Rosato, S. C. 2005. Weed control for tall fescue seed production and stand duration without burning. Crop Sci 45:26142628.Google Scholar
Nashiki, M., Hironobu, N., and Higashiyama, Y. 2005. Herbage mass, nutritive value and palatability of five grass weeds for cattle in the northern Tohoku region in Japan. Weed Biol. Manag 5:110117.Google Scholar
National Research Council 1996. Nutrient Requirements of Beef Cattle, 7th rev. ed. Washington, DC: National Academy Press. 16 p.Google Scholar
Seefeldt, S. S., Stephens, J. M. C., Verkaaik, M. L., and Rahman, A. 2005. Quantifying the impact of a weed in a perennial ryegrass–white clover pasture. Weed Sci 53:113120.Google Scholar
Sheley, R. L., Duncan, C. A., Halstvedt, M. B., and Jacobs, J. S. 2000. Spotted knapweed and grass response to herbicide treatments. J. Range Manag 53:176182.Google Scholar
Spanghero, M., Boccalon, S., Gracco, L., and Gruber, L. 2003. NDF digestibility of hays measured in situ and in vitro. Animal Feed Sci. Technol 104:201208.Google Scholar
Toler, J. E., Guice, J. B., and Murdock, E. C. 1996. Interference between johnsongrass (Sorghum halepense), smooth pigweed (Amaranthus hybridus), and soybean (Glycine max). Weed Sci 44:331338.Google Scholar
Tranel, P. J., Jeschke, M. R., Wassom, J. J., Maxwell, D. J., and Wax, L. M. 2003. Variation in soybean (Glycine max (L.) Merr.) interference among common cocklebur (Xanthium strumarium L.) accessions. Crop Prot 22:375380.Google Scholar
[USDA] U.S. Department of Agriculture 2007. 2007 Census of Agriculture–State Data. Vol. 1. Washington, DC: USDA, National Agriculture Statistics Service. Pp. 349358.Google Scholar
Westerhaus, M., Workman, J. Jr., Reeves, J. B. III, and Mark, H. 2004. Quantitative analysis. Pages 133205. In Roberts, A., Workman, J. Jr., and Reeves, J. B. III. eds. Near-Infrared Spectroscopy in Agriculture. Agron. Monogr. No. 44 C. Madison, WI: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.Google Scholar
Wolf, D. and Opitz von Boberfeld, W. 2003. Effects of nitrogen fertilization and date of utilization on the quality and yield of tall fescue in winter. J. Agron. Crop Sci 189:4753.Google Scholar