Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T23:22:49.744Z Has data issue: false hasContentIssue false

Exploration of the Use of the “Bialaphos Genes” for Improving Bioherbicide Efficacy

Published online by Cambridge University Press:  12 June 2017

R. Charudattan
Affiliation:
Biol. Control of Weeds Lab., Plant Pathol. Dep., Univ. Florida, Gainesville, FL 32611
V. J. Prange
Affiliation:
Biol. Control of Weeds Lab., Plant Pathol. Dep., Univ. Florida, Gainesville, FL 32611
J. T. Devalerio
Affiliation:
Biol. Control of Weeds Lab., Plant Pathol. Dep., Univ. Florida, Gainesville, FL 32611

Abstract

We are studying the possibility of altering the virulence and host range of a phytopathogen by transferring and expressing certain genes from the soil-dwelling saprophyte, Streptomyces hygroscopicus, in a plant pathogen model, Xanthomonas campestris pv. campestris (XCC). The genes, referred to herein as the “bialaphos genes,” encode the production of bialaphos, a potent glutamine-synthetase-inhibiting herbicide. This cluster of genes was originally isolated from several biosynthetically blocked mutants of S. hygroscopicus and constructed into a plasmid vector, pBG9. We have transferred a fragment of the gene cluster into pLAFR3, a plasmid that functions in both Escherichia coli and XCC and contains a tetracycline resistance marker. The resulting plasmid, named pIL-1, was used to transform E. coli and was incorporated into XCC by conjugation. The transfer of the fragment was confirmed by Southern analysis. The genes were maintained in XCC for about 47 generations in the absence of selection for tetracycline, and no changes in cultural phenotypes were seen in the transformed XCC (XCC/pIL-1). The XCC/pIL-1 cells were pathogenic to their natural hosts cabbage and broccoli, but induced an altered hypersensitive response in the nonhosts bean, pepper, sunflower, and tobacco. The pathogenic host-reaction, induced by the parent XCC, XCC/pLAFR3, and XCC/pIL-1, was a typical black rot disease in inoculated leaves of the two hosts. The nonhost reaction on the nonhost leaves was necrotic hypersensitivity, induced by XCC and XCC/pLAFR3, or the inhibition of hypersensitivity accompanied by only chlorosis at sites inoculated with XCC/pIL-1. We hypothesize that the altered hypersensitivity phenotype may be due to the transformed XCC becoming more compatible with the nonhosts, a step toward acquiring nonhost-virulence, or due to disruption of the normal expression of the hypersensitivity and pathogenicity genes in the transformed XCC. More work is needed to confirm that the introduced genes are being expressed in XCC. With further understanding, this approach may provide a useful model to study host range, virulence, and strain improvement of plant pathogens for biological control of weeds.

Type
Symposium
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Alijah, R., Dorendorf, J., Talay, S., Pühler, A., and Wohlleben, W. 1991. Genetic analysis of the phosphinothricin-tripeptide biosynthetic pathway of Streptomyces viridochromogenes Tü494. Appl. Mirobiol. Biotechnol. 34:749755.Google Scholar
2. Anzai, H., Murakami, T., Imai, S., Satoh, A., Nagaoka, K., and Thompson, C. J. 1987. Transcriptional regulation of bialaphos biosynthesis in Streptomyces hygroscopicus . J. Bacteriol. 169:34823488.CrossRefGoogle ScholarPubMed
3. Barras, F. and Chatterjee, A. K. 1987. Genetic analysis of the pe/A-pe/E cluster encoding the acidic and basic pectate lyases in Erwinia chrysanthemi EC16. Mol. Gen. Genet. 209:615.Google Scholar
4. Bayer, E., Gugel, K. H., Hagele, H., Hagenmaier, H., Jessipow, S., Koning, S. A., and Zähner, H. 1972. Stoffwechselprodukte von mikroorganismen. Phosphinothricin und phosphinothricyl-alanyl-alanin. Helv. Chim. Acta 55:224239.Google Scholar
5. Bedford, D. J., Lewis, C. G., and Buttner, M. J. 1991. Characterization of a gene conferring bialaphos resistance in Streptomyces coelicolor . Gene 104:3945.Google Scholar
6. Birnboim, H. C. and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acid Res. 7:15131523.Google Scholar
7. Brooker, N. L. and Bruckart, W. 1996. The use of genetically engineered fungi in agriculture. p. 149163 in Engineered Organisms in Environmental Settings. CRC Press, Boca Raton, FL.Google Scholar
8. Charudattan, R. 1985. The use of natural and genetically altered strains of pathogens for weed control. p. 347372 in Hoy, M. A. and Herzog, D. C., eds. Biological Control in Agricultural IPM Systems. Academic Press, Orlando, FL.Google Scholar
9. Charudattan, R. 1989. Assessment of efficacy of mycoherbicide candidates. p. 455464 in Delfosse, E. S., ed. Proc. VII Int. Symp. Biological Control of Weeds, Istituto Sperimentale per la Patologia Vegetale, Rome, Italy.Google Scholar
10. Charudattan, R. 1991. The mycoherbicide approach with plant pathogens. p. 2457 in TeBeest, D. O., ed. Microbial Control of Weeds, Chapman and Hall, New York.Google Scholar
11. Chun, W. and Leary, J. V. 1989. A novel toxin produced by Pseudomonas corrugata, the causal agent of tomato pith necrosis: Determination of its role in virulence and the genetics of production, p. 93112 in Graniti, A., Durbin, R. D., and Ballio, A., eds. Phytotoxins and Plant Pathogenesis. NATO ASI Ser., Vol. H27, Springer-Verlag, Berlin.Google Scholar
12. Collmer, A., Ried, J. L., Cleveland, G. L., He, S. Y., and Brooks, A. D. 1989. Mutational analysis of the role of pectic enzymes in the virulence of Erwinia chrysanthemi . p. 3548 in Staskawicz, B., Ablquist, P., and Yoder, O., eds. Molecular Biology of Plant-Pathogen Interactions. Alan R. Liss, New York.Google Scholar
13. DeFeyter, R. C., Kado, I., and Gabriel, D. W. 1990. Small, stable shuttle vectors for use in Xanthomonas . Gene 88:6572.Google Scholar
14. Ditta, G., Stanfield, S., Corbin, D., and Helinski, D. R. 1980. Broad host range DNA cloning system for gram-negative bacteria: Construction of a gene bank of Rhizobium meliloti . Proc. Natl. Acad. Sci. U.S.A. 77:7347.Google Scholar
15. Figurski, D. H. and Helenski, D. R. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc. Natl. Acad. Sci. U.S.A. 76:16481652.Google Scholar
16. Gabriel, D. W., Loschke, D. C., and Rolfe, B. G. 1988. Gene-for-gene recognition: The ion channel defense model. p. 314 in Palacios, R. and Verma, D.P.S., eds. Molecular Genetics of Plant-Microbe Interactions. APS Press, St. Paul, MN.Google Scholar
17. Greaves, M. P., Bailey, J. A., and Hargreaves, J. A. 1989. Mycoherbicides: Opportunities for genetic manipulations. Pestic. Sci. 26:93101.Google Scholar
18. Grimm, C., Rahme, L., Frederick, R., Mindrinos, M., Lindgren, P. B., and Panopoulos, N. J. 1989. The common pathogenicity genes of Pseudomonas syringae pathovars. p. 4955 in Staskawicz, B., Ahlquist, P., and Yoder, O., eds. Molecular Biology of Plant-Pathogen Interactions. Alan R Liss, New York.Google Scholar
19. Hara, O., Anzai, H., Imai, S., Kumada, Y., Murakami, T., Itoh, R., Takano, E., Satoh, A., and Nagaoka, K. 1988. The bialaphos biosynthetic genes of Streptomyces hygroscopicus: Cloning and analysis of the genes involved in the alanylation step. J. Antibiot. 41:18381845.Google Scholar
20. Horinouchi, S. and Beppu, T. 1985. Construction and application of a promotor-probe plasmid that allows chromogenic identification in Streptomyces lividans . J. Bateriol. 162:406412.Google Scholar
21. Imai, S., Seto, H., Sasaki, T., Tsuruoka, T., Ogawa, H., Satoh, A., Inouye, S., Niida, T., and Otake, N. 1984. Studies on the biosynthesis of bialaphos (SF-1293). 4. Production of phosphonic acid derivatives 2-hydroxyethylphosphonic acid, hydroxymethylphosphonic acid and phosphonoformic acid by blocked mutants of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos. J. Antibiot. 37:15051508.Google Scholar
22. Imai, S., Seto, H., Sasaki, T., Tsuruoka, T., Ogawa, H., Satoh, A., Inouye, S., Niida, T., and Otake, N. 1985. Studies on the biosynthesis of bialaphos (SF-1293). 6. Production of N-acetyldemethylphosphinothricin and N-acetylbialaphos by blocked mutants of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos. J. Antibiot. 38:687690.CrossRefGoogle ScholarPubMed
23. Kamdar, H. V., Clements, D. E., and Patil, S. S. 1989. Cloning and characterization of genes encoding phaseolotoxin, the toxin produced by Pseudomonas syringae pv. phaseolicola . p. 8591 in Graniti, A., Durbin, R. D., and Ballio, A., eds. Phytotoxins and Plant Pathogenesis. NATO ASI Ser., Vol. H27, Springer-Verlag, Berlin.Google Scholar
24. Kinscherf, T. G., Coleman, R. H., Barta, T. M., and Willis, D. W. 1991. Cloning and expression of the tabtoxin biosynthetic region from Pseudomonas syringae . J. Bacteriol. 173:41244132.Google Scholar
25. Kondo, Y., Shomura, T., Ogawa, Y., Tsuruoka, T., Watanabe, H., Totukawa, K., Suzuki, T., Moriyama, C., Yoshida, J., Inouye, S., and Niida, T. 1973. Studies on the new antibiotic SF-1293. 1. Isolation and physico-chemical and biological characterization of SF-1293 substances. Sci. Rep. Meiji Seika 13:3441.Google Scholar
26. Kumada, Y., Anzai, H., Takano, E., Murakami, T., Hara, O., Itoh, R., Imai, S., Satoh, A., and Nagaoka, A. 1988. The bialaphos resistance gene (bar) plays a role in both self defense and bialaphos biosynthesis in Streptomyces hygroscopicus . J. Antibiot. 41:18381845.Google Scholar
27. Maniatis, T., Fritsch, E. F., and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, MA. 545 p.Google Scholar
28. Mellano, V. J. and Cooksey, D. A. 1988. Development of host-range mutants of Xanthomonas campestris pv. translucent . Appl. Environ. Microbiol. 54:884889.Google Scholar
29. Minsavage, G. V., Dahlbeck, D., Whalen, M. C., Kearney, B., Bonas, U., Staskawicz, B. J., and Stall, R. E. 1990. Molecular analysis of gene-for-gene relationships in Xanthomonas campestris pv. vesicatoria—pepper interactions. Mol. Plant-Microbe Interact. 3:4147.Google Scholar
30. Murakami, T., Anzai, H., Imai, S., Satoh, A., Nagaoka, K., and Thompson, C. J. 1986. The bialaphos biosynthetic genes of Streptomyces hygroscopicus: Molecular cloning and characterization of the gene cluster. Mol. Gen. Genet. 205:4250.Google Scholar
31. Nagaoka, K. 1987. Cloning, expression and application of Streptomyces genes. p. 4560 in Cape, R. F., Goldberg, M. L., Hata, T., and Maeda, K., eds. Antibiotic Research and Biotechnology. Proc. US-Japan Colloq. on Antibiotic Res. and Biotechnol. J. Antibiot. Res. Assn., Tokyo.Google Scholar
32. Ogawa, Y., Imai, S., Shimizu, T., and Satoh, A. 1982. Genetic recombination in AMPBA producing Streptomyces hygroscopicus by protoplast fusion and cell regeneration. Sci. Rep. Meiji Seika 21:5258.Google Scholar
33. Ogawa, H., Imai, S., Shimizu, T., Satoh, A., and Kojima, M. 1983. Cosynthesis and protoplast fusion by mutants of bialaphos (AMPBA) producing Streptomyces hygroscopicus . J. Antibiot. 36:10401044.Google Scholar
34. Ogawa, Y., Tsuruoka, T., Inouye, S., and Niida, T. 1973. Studies on a new antibiotic SF-1293. Sci. Rep. Meiji Seika 13:4248.Google Scholar
35. Osbourn, A. E., Clarke, B. R., and Daniels, M. J. 1990. Identification of DNA sequence of a pathogenicity gene of Xanthomonas campestris pv. campestris . Mol. Plant-Microbe Interact. 3:280285.CrossRefGoogle ScholarPubMed
36. Panapoulos, N. J. and Peet, R. C. 1989. Ornithine carbamoyltransferase gene duplication and phaseolotoxin resistance in Pseudomonas syringae pv. phaseolicola . p. 7183 in Graniti, A., Durbin, R. D., and Ballio, A., eds. Phytotoxins and Plant Pathogenesis. NATO ASI Ser. Vol. H27, Springer-Verlag, Berlin.CrossRefGoogle Scholar
37. Rahme, L. G., Mindrinos, M. N., and Panopoulos, N. J. 1991. Genetic and transcriptional organization of the hrp cluster of Pseudomonas syringae pv. phaseolicola . J. Bacteriol. 173:576586.Google Scholar
38. Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. 2nd Edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, MA. 3 Vol.Google Scholar
39. Sands, D. C., Ford, E. J., and Miller, R. V. 1990. Genetic manipulation of broad host-range fungi for biological control of weeds. Weed Technol. 4:471474.Google Scholar
40. SAS Institute Inc. 1985. SAS/STAT™ Guide for Personal Computers, Version 6 Edition. SAS Institute Inc., Cary, NC. 378 p.Google Scholar
41. Sasser, M. 1990. Identification of bacteria through fatty acid analysis. p. 199204 in Klement, Z., Rudolph, K., and Sands, D. C., eds. Methods in Phytobacteriology. Akademiai Kiado, Budapest, Hungary.Google Scholar
42. Schaad, N. C. 1988. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 2nd Edition. APS Press, St. Paul, MN. 157 p.Google Scholar
43. Seto, H. S. Sasaki, Irnai T., Shimotohno, K., Tsuruoka, T., Ogawa, H., Satoh, A., Sasaki, T., and Otake, N. 1984. Studies on the biosynthesis of bialaphos (SF-1293). 5. Production of 2-phosphinomethylmalic acid, an analogue of citric acid by Streptomyces hygroscopicus SF-1293 and its involvement in the biosynthesis of bialaphos. J. Antibiot. 37:15091511.Google Scholar
44. Seto, H., Imai, S., Tsuruoka, T., Ogawa, H., Satoh, A., Sasaki, T., and Otake, N. 1983. Studies on the biosynthesis of bialaphos (SF-1293). Pan 3. Production of phosphinic acid derivatives. MP-103. MP-104 and MP-105. by blocked mutant of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos. Biochem. Biophys. Res. Commun. 111:10081014.Google Scholar
45. Seto, H., Imai, S., Tsuruoka, T., Satoh, A., Kojima, M., Inouye, S., Sasaki, T. and Otake, N. 1982. Studies on the biosynthesis of bialaphos (SF-1293). 1. Incorporation of 13C- and 2H-labeled precursors into bialaphos. J. Antibiot. 35:17191721.Google Scholar
46. Seto, H., Sasaki, T., Imai, S., Tsuruoka, T., Ogawa, H., Satoh, A., Inouye, S., Niida, T., and Otake, N. 1983. Studies on the biosynthesis of bialaphos (SF-1293). 2. Isolation of the first natural products with a C-P-H bond and their involvement in the C-P-C bond formation. J. Antibiot. 36:9698.Google Scholar
47. Staskawicz, B. J., Dahlbeck, D., and Keen, N. T. 1984. Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.). Merr. Proc. Natl. Acad. Sci. U.S.A. 81:60246028.Google Scholar
48. Staskawicz, B., Dahlbeck, D., Keen, N., and Napoli, C. 1987. Molecular characterization of cloned avirulence genes from Pseudomonas syringae pv. glycinea . J. Bacteriol. 169:57895794.Google Scholar
49. Tachibana, K. 1987. Herbicidal characteristics of bialaphos. p. 145148 in Greenhalgh, R. and Roberts, T. R., eds. Pesticide Science and Biotechnology. Blackwell Sci. Publ., London, England.Google Scholar
50. Tachibana, K., Watanabe, T., Sekizawa, Y., and Takematsu, T. 1986. Inhibition of glutamine synthetase and quantitative changes in free amino acids in shoots of bialaphos-treated Japanese barnyard millet. J. Pestic. Sci. 11:2731.Google Scholar
51. Tachibana, K., Watanabe, T., Sekizawa, Y., and Takematsu, T. 1986. Accumulation of ammonia in plants treated with bialaphos. J. Pestic. Sci. 11:3337.Google Scholar
52. Takebe, H., Imai, S., Ogawa, H., Satoh, A., and Tanaka, H. 1989. Breeding of bialaphos producing strains from a biochemical engineering viewpoint. J. Ferment. Bioeng. 67:226232.Google Scholar
53. Tang, J.-L., Liu, Y.-N., Barber, C. E., Dow, J. M., Wootton, J. C., and Daniels, M. J. 1991. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharides in Xanthomonas campestris pathovar campestris . Mol. Gen. Genet. 226:409–117.Google Scholar
54. TeBeest, D. O., Yang, X. B., and Cisar, C. R. 1992. The status of biological control of weeds with fungal pathogens. Annu. Rev. Phytopathol. 30:637657.Google Scholar
55. Templeton, G. E. and Heiny, D. K. 1989. Improvement of fungi to enhance mycoherbicide potential. p. 127135 in Whipps, J. M. and Lumsden, R. D., eds. Biotechnology of Fungi for Improving Plant Growth. Cambridge Univ. Press., United Kingdom.Google Scholar
56. Thompson, C. J., Rao Movva, N., Tizard, R., Crameri, R., Davies, J. E., Lauwereys, M., and Botterman, J. 1987. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus . EMBO J. 6:25192523.Google Scholar
57. Turgeon, G. and Yoder, O. C. 1985. Genetically engineered fungi for weed control. p. 221230 in Cheremisinoff, P. N. and Ouellette, R. P., eds. Biotechnology: Applications and Research. Technomic Publ. Co., Lancaster, PA.Google Scholar
58. Waney, V. R., Kingsley, M. T., and Gabriel, D. W. 1991. Xanthomonas campestris pv. translucens genes determining host-specific virulence and general virulence on cereals identified by Tn5-gusA insertion mutagenesis. Mol. Plant-Microbe Interact. 4:623627.Google Scholar
59. Whalen, M. C., Stall, R. E., and Staskawicz, B. J. 1988. Characterization of a gene from a tomato pathogen determining hypersensitive resistance in non-host species and genetic analysis of this resistance in bean. Proc. Natl. Acad. Sci. U.S.A. 85:67436747.Google Scholar
60. Willis, D. K., Kinscherf, T. G., Coleman, R. H., and Barta, T. M. 1989. Identification and isolation of a DNA region required for tabtoxin production: Apparent deletion in Pseudomonas syringae pv. tabaci variant ‘angulata’ and Tox mutants. p. 6170 in Graniti, A., Durbin, R. D., and Ballio, A., eds. Phytotoxins and Plant Pathogenesis. NATO ASI Ser. Vol. H27, Springer-Verlag, Berlin.Google Scholar
61. Willis, D. K., Rich, J. J., and Hrabak, E. M. 1991. hrp Genes of phytopathogenic bacteria. Mol. Plant-Microbe Interact. 4:132138.Google Scholar
62. Yoder, O. C., Turgeon, B. G., Ciuffetti, L. M., and Schafer, M. 1989. Genetic analysis of toxin production by fungi. p. 4360 in Graniti, A., Durbin, R. D., and Ballio, A., eds. Phytotoxins and Plant Pathogenesis. NATO ASI Ser. Vol. H27. Springer-Verlag, Berlin.Google Scholar