Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T02:44:26.209Z Has data issue: false hasContentIssue false

Effects of Preemergence Herbicides on Bell Pepper, Crop Injury, and Weed Management in Irrigated Chilean Fields

Published online by Cambridge University Press:  20 January 2017

Rodrigo Figueroa*
Affiliation:
Crop Science Department, College of Agronomy and Forestry, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
Fernanda Pacheco
Affiliation:
Crop Science Department, College of Agronomy and Forestry, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
Connie Echaiz
Affiliation:
Crop Science Department, College of Agronomy and Forestry, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
Gabriela Cordovez
Affiliation:
Crop Science Department, College of Agronomy and Forestry, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
Nathalie Kuhn
Affiliation:
Crop Science Department, College of Agronomy and Forestry, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
*
Corresponding author's E-mail: [email protected].

Abstract

Bell pepper is an economically important vegetable crop that is often impaired by weeds. Management of weeds in bell pepper is required to minimize yield loss because this crop does not tolerate weed competition. Several herbicides have been reported as selective for bell pepper, but research supporting their use for weed control in this crop is limited. Several herbicides were screened in a greenhouse to assess effects on plant biomass, and eight were selected that appeared to be safe for bell pepper. These herbicides, in addition to oxadiargyl, were then evaluated at two different Chilean locations, using different application timings. We measured the effects on plant injury, fruit yield, and the need for additional hand weeding on transplanted bell peppers. The herbicides clomazone, napropamide, pendimethalin, and S-metolachlor caused minimal foliar chlorosis and necrosis but did not affect fruit yield at either location. Pretransplant-incorporated application (PTI) caused no effect on fruit yield from the herbicides evaluated, whereas applications 2 wk (POST2) and 8 wk (POST8) after transplanting reduced fruit yield significantly. For weed management, the best combination was PTI + POST2 + POST8, which reduced the hand-weeding time by 30% compared to the control, at both locations. Based on our results, clomazone, pendimethalin, and S-metolachlor were the most effective treatments applied after transplanting, whereas all herbicides tested were selective for bell pepper when applied and incorporated before transplanting. Results presented here provide new insight into herbicides that can be used to manage weeds in bell pepper and shows that timing of herbicide application is critical to prevent injury to this crop.

El pimiento es un cultivo hortícola económicamente importante que es frecuentemente afectado por las malezas. El manejo de malezas en pimiento es necesario para minimizar las pérdidas de rendimiento porque este cultivo no tolera la competencia de las malezas. Varios herbicidas han sido reportados como selectivos para el pimiento, pero la investigación apoyando su uso para el control de malezas en este cultivo es limitada. Varios herbicidas fueron evaluados en un invernadero para determinar los efectos en la biomasa de la planta, y de estos se seleccionaron ocho herbicidas que parecían ser seguros en el pimiento. Estos herbicidas, además de oxadiargyl, fueron evaluados en dos localidades diferentes de Chile, usando diferentes momentos de aplicación. Nosotros medimos los efectos en el daño a la planta, el rendimiento de fruto, y la necesidad de desmalezado manual adicional en pimiento trasplantado. Los herbicidas clomazone, napropamide, pendimethalin, y S-metolachlor causaron clorosis y necrosis foliar mínimas, pero no afectaron el rendimiento de fruto en ninguna de las localidades. La aplicación incorporada pre-trasplante (PTI) no causó ningún efecto en el rendimiento de fruto producto de los herbicidas evaluados, mientras que aplicaciones 2 semanas (POST2) y 8 semanas (POST8) después del trasplante redujeron el rendimiento de fruto significativamente. Para el manejo de malezas, la mejor combinación fue PTI + POST2 + POST8, la cual redujo el tiempo de deshierba manual en 30% al compararse con el testigo, en ambas localidades. Con base en nuestros resultados, clomazone, pendimethalin, y S-metolachlor fueron los tratamientos aplicados después del trasplante más efectivos, mientras todos los herbicidas evaluados fueron selectivos al pimiento cuando fueron aplicados e incorporados antes del trasplante. Los resultados presentados aquí brindan nueva información acerca de los herbicidas que pueden ser usados para manejar malezas en la producción de pimiento y muestran que el momento de aplicación de herbicidas es crítico para prevenir el daño a este cultivo.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Steve Fennimore, University of California, Davis.

References

Literature Cited

Abdelhamid, MT, El-Metwally, IM (2008) Growth, nodulation, and yield of soybean and associated weeds as affected by weed management. Planta Daninha 26:855863 Google Scholar
Ackley, JA, Wilson, HP, Hines, TE (1998) Weed management in transplanted bell pepper (Capsicum frutescens) with clomazone and rimsulfuron. Weed Technol 12:458462 Google Scholar
Adigun, JA, Lagoke, STO, Karikari, SK (1991) Weed interference in transplanted sweet pepper (Capsicum annum L.). Trop Pest Manag 37:155158 Google Scholar
Amador-Ramírez, MD (2002) Critical period of weed control in transplanted chile pepper. Weed Res 42:203209 Google Scholar
Amador-Ramírez, MD, Mojarro Dávila, F, Velasquez Valle, R (2007) Efficacy and economics of weed control for dry chile pepper. Crop Prot 26:677682 Google Scholar
Baltazar, AM, Mónaco, TJ, Peele, DM (1984) Bentazon selectivity in hot pepper (Capsicum chinense) and sweet pepper (Capsicum annuum). Weed Sci 32:243246 Google Scholar
Barriuso, E, Laird, A, Koskinen, WC, Dowdy, RH (1994) Atrazine desorption from smectites. Soil Sci Soc Am J 58:16321638 Google Scholar
Eshel, Y, Katan, J, Palevitch, D (1973) Selective action of diphenamid and napropamide in pepper (Capsicum annuum) and weeds. Weed Res 13:379384 Google Scholar
[FAOSTAT] Food and Agriculture Organization Statistical Database (2012) Agriculture Data. http://faostat.fao.org. Accessed January 7, 2015)Google Scholar
Felix, J, Doohan, D (2005) Response of five vegetable crops to isoxaflutole soil residues. Weed Technol 19:391396 Google Scholar
Fu, R, Ashley, RA, (2006) Interference of large crabgrass (Digitaria sanguinalis), redroot pigweed (Amaranthus retroflexus), and hairy galinsoga (Galinsoga ciliata) with bell pepper. Weed Sci 54:364372 Google Scholar
Grey, TL, Bridges, DC, NeSmith, DS (2001) Response of several transplanted pepper cultivars to variable rates and methods of applications of clomazone. HortScience 36:104106 Google Scholar
Grey, TL, Bridges, DC, NeSmith, DS (2002) Transplanted pepper (Capsicum annuum) tolerance to selected herbicides and method of application. J Veg Crop Prod 8:2739 Google Scholar
Harrison, HF Jr., Fery, RL (1989) Assessment of bentazon tolerance in pepper (Capsicum sp.). Weed Technol 3:307312 Google Scholar
Kogan, M, eds (1992) Malezas: Ecofisiología y Estrategias de Control. Colección en Agricultura. Santiago, Chile: Pontificia Universidad Católica de Chile, Facultad de Agronomía. 416 pGoogle Scholar
Labrada, R, Paredes, E (1983) Periodo crítico de competencia de malezas y valoración de herbicidas en plantaciones de pimiento. Agrotec Cuba 15:3546 Google Scholar
Lanini, WT, LeStrange, M (1991) Low-input management of weeds in vegetable fields. Calif Agric 45:1113 Google Scholar
Lee, RD, Schroeder, J (1995) Weed Management in Chile. Circular 548. Las Cruces, NM: New Mexico State University Agricultural Experiment Station. 7 pGoogle Scholar
Medina, JA (1995) Estudio de la Flora Arvense y su Competencia en los Cultivos de Transplante y Siembra Directa de Pimiento (Capsicum annuum L.). Ph.D Dissertation. Lérida, Spain: University of Lerida, Spain. 209 pGoogle Scholar
Miller, MR, Dittmar, PJ (2014) Effect of PRE and POST-directed herbicides for season-long nutsedge (Cyperus spp.) control in bell pepper. Weed Technol 28: 518526 Google Scholar
Morales-Payan, JP, Charudatten, R, Stall, WM, DeValerio, JT (2003) Suppression of purple nutsedge in bell pepper with the potential bioherbicide Dactylaria higginsii . Proc Southern Weed Sci Soc 56:111 Google Scholar
Nam, K, Namhyun, C, Alexander, M (1998) Relationship between organic matter content of soil and the sequestration of phenanthrene. Environ Sci Technol 32:37853788 Google Scholar
O'Connell, PJ, Harms, CT, Allen, JRF (1998) Metolachlor, S-metolachlor and their role within sustainable weed-management. Crop Prot 17:207212 Google Scholar
[ODEPA] Oficina de Estudios y Políticas Agrarias. 2013. http://www.odepa.cl/. Accessed June 15, 2014Google Scholar
Porter, WC (1991) Evaluations of herbicides for use with transplanted bell pepper. La Agric 34:1314 Google Scholar
Rajkumara, S, Palled, YB (2009) Weed management in drilled onion (Allium cepa L.), chilli (Capsicum annuum L.), cotton (Gossypium herbaceum L.) relay intercropping in raifed vertisols. Hisar, India: Indian Society of Weed Science. Indian J Weed Sci 41:189194 Google Scholar
Robinson, DE, McNaughton, K, Soltani, N (2008) Weed management in transplanted bell pepper (Capsicum annuum) with pretransplant tank mixes of sulfentrazone, S-metolachlor, and dimethenamid-p. HortScience 43:14921494 Google Scholar
[SAG] Servicio Agrícola y Ganadero (2014) Inocuidad y Biotecnología, Plaguicidas, y Fertilizantes. http://www.sag.cl/ambitos-de-accion/plaguicidas-y-fertilizantes. Accessed December 20, 2014Google Scholar
Schroeder, J (1992) Pepper (Capsicum annuum) cultivar response to metolachlor in three New Mexico soils. Weed Tech 6:366373 Google Scholar
Wolf, DW, Monaco, TJ, Collins, WW (1989) Differential tolerance of peppers (Capsicum annuum) to bentazon. Weed Technol 3:579583 Google Scholar