Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T04:18:58.344Z Has data issue: false hasContentIssue false

Cotton, Peanut, and Soybean Response to Sublethal Rates of Dicamba, Glufosinate, and 2,4-D

Published online by Cambridge University Press:  20 January 2017

Virginia A. Johnson
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
Loren R. Fisher*
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
David L. Jordan
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
Keith E. Edmisten
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
Alexander M. Stewart
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
Alan C. York
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
*
Corresponding author's E-mail: [email protected]

Abstract

Development and utilization of dicamba-, glufosinate-, and 2,4-D-resistant crop cultivars will potentially have a significant influence on weed management in the southern United States. However, off-site movement to adjacent nontolerant crops and other plants is a concern in many areas of eastern North Carolina and other portions of the southeastern United States, especially where sensitive crops are grown. Cotton, peanut, and soybean are not resistant to these herbicides, will most likely be grown in proximity, and applicators will need to consider potential adverse effects on nonresistant crops when these herbicides are used. Research was conducted with rates of glufosinate, dicamba, and 2,4-D designed to simulate drift on cotton, peanut, and soybean to determine effects on yield and quality and to test correlations of visual estimates of percent injury with crop yield and a range of growth and quality parameters. Experiments were conducted in North Carolina near Lewiston-Woodville and Rocky Mount during 2009 and 2010. Cotton and peanut (Lewiston-Woodville and Rocky Mount) and soybean (two separate fields [Rocky Mount] during each year were treated with dicamba and the amine formulation of 2,4-D at 1/2, 1/8, 1/32, 1/128, and 1/512 the manufacturer's suggested use rate of 280 g ai ha−1 and 540 g ai ha−1, respectively. Glufosinate was applied at rates equivalent to 1/2, 1/4, 1/8, 1/16, and 1/32 the manufacturer's suggested use rate of 604 g ai ha−1. A wide range of visible injury was noted at both 1 and 2 wk after treatment (WAT) for all crops. Crop yield was reduced for most crops when herbicides were applied at the highest rate. Although correlations of injury 1 and 2 WAT with yield were significant (P ≤ 0.05), coefficients ranged from −0.25 to −0.50, −0.36 to −0.62, and −0.40 to −0.67 for injury 1 WAT vs. yield for cotton, peanut, and soybean, respectively. These respective crops had ranges of correlations of −0.17 to −0.43, −0.34 to −0.64, and −0.41 to −0.60 for injury 2 WAT. Results from these experiments will be used to emphasize the need for diligence in application of these herbicides in proximity to crops that are susceptible as well as the need to clean sprayers completely before spraying sensitive crops.

El desarrollo y la utilización de cultivares resistentes a dicamba, glufosinate y 2,4-D, tendrá potencialmente una influencia importante en el manejo de malezas en el sur de los Estados Unidos. Sin embargo, la deriva de estos herbicidas a cultivos adyacentes no tolerantes y a otras plantas, es una preocupación en muchas áreas del este de Carolina del Norte y otras regiones del sureste de los Estados Unidos, especialmente donde se siembran cultivos sensibles. El algodón, el maní y la soyano son resistentes a estos herbicidas, y muy probablemente serán sembrados con cierta cercanía y los aplicadores necesitarán tomar en consideración los efectos adversos potenciales en cultivos no resistentes cuando éstos herbicidas sean usados. Se realizó una investigación con dosis de glufosinate, dicamba, y 2,4-D, diseñadas para simular deriva sobre algodón, maní y soya, para determinar los efectos en el rendimiento y la calidad y para probar las correlaciones de estimaciones visuales del porcentaje de daño con el rendimiento del cultivo y un rango de parámetros de crecimiento y calidad. Los experimentos se realizaron en Carolina del Norte cerca de Lewiston-Woodville y Rocky Mount durante 2009 y 2010. El algodón y el maní (Lewiston-Woodville y Rocky Mount) y la soya en dos campos separados en Rocky Mount durante cada año, se trataron con dicamba y una formulación amina de 2,4-D a 1/2, 1/8, 1/32, 1/128 y 1/512, de la dosis sugerida por los fabricantes, de 280 g ia ha-1 y 540 g ia ha-1, respectivamente. El glufosinate se aplicó a dosis equivalentes a 1/2, 1/4, 1/8, 1/16 y 1/32 de la dosis recomendada en la etiqueta, de 604 g ia ha-1. Se observó una amplia gama de daño visible a una y dos semanas después del tratamiento (WAT) para todos los cultivos. El rendimiento se redujo para la mayoría de los cultivos cuando los herbicidas se aplicaron a la mayor dosis. Aunque las correlaciones de daño a una y dos WAT con respecto al rendimiento fueron significativas (p ≤ 0.05), los coeficientes variaron de −0.25 a −0.50, de −0.36 a −0.62 y de −0.40 a −0.67 de daño a una WAT, en comparación con el rendimiento de algodón, maní y soya, respectivamente. Estos cultivos respectivos tuvieron rangos de correlación de −0.17 a −0.43, de −0.34 a −0.64 y de −0.41 a −0.60 de daño a dos WAT. Los resultados de estos experimentos serán usados para enfatizar la necesidad de ser diligentes en la aplicación de estos herbicidas al estar cerca de cultivos susceptibles, así como la necesidad de limpiar completamente los aspersores antes de aplicar sobre los cultivos sensibles.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K. and Peterson, D. 1999. Soybean (Glycine max) response to simulated drift from selected sulfonylurea herbicides, dicamba, glyphosate, and glufosinate. Weed Technol. 13:264270.CrossRefGoogle Scholar
Andersen, S. M., Clay, S. A., Wrage, L. J., and Matthees, D. 2004. Soybean foliage residues of dicamba and 2,4-D and correlation to application rates and yield. Agron. J. 96:750760.Google Scholar
Anonymous, . 2010. Roundup Ready System. Available at http://www.monsanto.com/weedmanagement/Pages/roundup-ready-system.aspx. Accessed: October 6, 2010.Google Scholar
Anonymous, . 2011a. Clarity™ herbicide product label. Research Triangle Park, NC: http://www.cdms.net/LDat/ld797011.pdf. Accessed: August 11, 2011.Google Scholar
Anonymous, . 2011b. Ignite™ herbicide product label. Research Triangle Park, NC: http://www.cdms.net/LDat/ld6ER002.pdf. Accessed: August 11, 2011.Google Scholar
Anonymous, . 2011c. Weedar 64™ herbicide product label. Burr Ridge, IL: http://www.cdms.net/LDat/ld08K019.pdf. Accessed: August 11, 2011.Google Scholar
Bayley, C., Trolinder, N., Ray, C., Morgan, M., Quisenberry, J. E., and Ow, D. W. 1992. Engineering 2,4-D resistance into cotton. Theoret. Appl. Gen. 83:645649.Google Scholar
Behrens, R. and Lueschen, W. E. 1979. Dicamba volatility. Weed Sci. 27:486493.Google Scholar
Brown, L. R., Robinson, D. E., Nurse, R. E., Swanton, C. J., and Sikkema, P. H. 2009. Soybean response to simulated dicamba/diflufenzopyr drift followed by postemergence herbicides. Crop Prot. 28:539542.Google Scholar
Burke, I. C., Thomas, W. E., Pline-Srnić, W. A., Fisher, L. R., Smith, W. D., and Wilcut, J. W. 2005. Yield and physiological response of flue-cured tobacco to simulated glyphosate drift. Weed Technol. 19:255260.CrossRefGoogle Scholar
Chang, F. Y. and Born, W. H. V. 1971. Dicamba uptake, translocation, metabolism, and selectivity. Weed Sci. 19:113117.CrossRefGoogle Scholar
Everitt, J. D. and Keeling, J. W. 2009. Cotton growth and yield response to simulated 2,4-D and dicamba drift. Weed Technol. 23:503506.CrossRefGoogle Scholar
Fagliari, J. R., de Oliveira, R. S. Jr., and Constantin, J. 2005. Impact of sublethal doses of 2,4-D, simulating drift, on tomato yield. J. Environ. Sci. Health B 40:201206.Google Scholar
Green, J. M. and Owen, M. D. K. 2010. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. J. Agric. Food Chem. 59:58195829.Google Scholar
Heap I. 2011. International Survey of Herbicide Resistant Weeds. Available at http://www.weedscience.org/in.asp. Accessed: February 8, 2011.Google Scholar
Isleib, T. G., Rice, P. W., Mozingo, R. W., Copeland, S. C., Graeber, J. B., Pattee, H. E., Sanders, T. H., Mozingo, R. W., and Coker, D. 2006. Registration of ‘Phillips’ peanut. Crop Sci. 46:2308.CrossRefGoogle Scholar
James, C. 2008. Global Status of Commercialized Biotech/GM Crops: 2008 the First Thirteen Years, 1996 to 2008. Available at http://www.isaaa.org/resources/publications/briefs/39/executivesummary/default.html. Accessed: October 11, 2010.Google Scholar
Jordan, D., Johnson, D., Spears, J., et al. 2005. Determining peanut pod maturity and estimating the optimal digging date: using pod mesocarp color for digging Virginia market type peanut. North Carolina Cooperative Extension Service Publication AG-633.Google Scholar
Lassiter, B. R., Burke, I. C., Thomas, W. E., Pline-Srnić, W. A., Jordan, D. L., Wilcut, J. W., and Wilkerson, G. G. 2007. Yield and physiological response of peanut to glyphosate drift. Weed Technol. 21:954960.CrossRefGoogle Scholar
Marple, M. E., Al-Khatib, K., and Peterson, D. E. 2008. Cotton injury and yield as affected by simulated drift of 2,4-D and dicamba. Weed Technol. 22:609614.Google Scholar
Marple, M. E., Al-Khatib, K., Shoup, D., Peterson, D. E., and Claassen, M. 2007. Cotton response to simulated drift of seven hormonal-type herbicides. Weed Technol. 21:987992.Google Scholar
Miller, D. K., Downer, R. G., Leonard, B. R., Holman, E. M., and Kelly, S. T. 2003. Response of non-glufosinate-resistant cotton to reduced rates of glufosinate. Weed Sci. 51:781785.Google Scholar
Murphy, C. E. and Lemerle, D. 2006. Continuous cropping systems and weed selection. Euphytica 148:6173.Google Scholar
Ott, R. L. and Longnecker, M. 2001. An Introduction to Statistical Methods and Data Analysis. Pacific Grove, CA: Wadsworth Group. 1152 p.Google Scholar
Owen, M. D. and Zelaya, I. A. 2005. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61:301311.Google Scholar
Ramsdale, B. K. and Messersmith, C. G. 2001. Drift-reducing nozzle effects on herbicide performance. Weed Technol. 15:453460.Google Scholar
Sauer, K. 2010. Is There Value in Transgenic Crops? Available at www.monsanto.com/newsviews/Pages/Is-There-Value-in-Transgenic-Crops.aspx. Accessed: October 5, 2010.Google Scholar
Sciumbato, A. S., Chandler, J. M., Senseman, S. A., Bovey, R. W., and Smith, K. L. 2004a. Determining exposure to auxin-like herbicides. I. Quantifying injury to cotton and soybean. Weed Technol. 18:11251134.Google Scholar
Sciumbato, A. S., Chandler, J. M., Senseman, S. A., Bovey, R. W., and Smith, K. L. 2004b. Determining exposure to auxin-like herbicides. II. Practical application to quantify volatility. Weed Technol. 18:11351142.CrossRefGoogle Scholar
Sciumbato, A. S., Senseman, S. A., Ross, J., Mueller, T. C., Chandler, J. M., Cothren, J. T., and Kirk, I. W. 2005. Effects of 2,4-D formulation and quinclorac on spray droplet size and deposition. Weed Technol. 19:10301036.Google Scholar
Senseman, S. A. 2007. Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America. 458 p.Google Scholar
Thomas, W. E., Burke, I. C., Robinson, B. L., Pline-Srnić, W. A., Edmisten, K. L., Wells, R., and Wilcut, J. W. 2005. Yield and physiological response of nontransgenic cotton to simulated glyphosate drift. Weed Technol. 19:3542.Google Scholar
Vangessel, M. J. and Johnson, Q. R. 2005. Evaluating drift control agents to reduce short distance movement and effect on herbicide performance. Weed Technol. 19:7885.Google Scholar
Wax, L. M., Knuth, L. A., and Slife, F. W. 1969. Response of soybeans to 2,4-D, dicamba, and picloram. Weed Sci. 17:388393.CrossRefGoogle Scholar
Williams, J. A. and Drexler, J. S. 1981. A non-destructive method for determining peanut pod maturity. Peanut Sci. 8:134141.CrossRefGoogle Scholar