Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T01:53:10.040Z Has data issue: false hasContentIssue false

Sequential Sulfometuron Methyl Applications in Eucalyptus benthamii Plantations

Published online by Cambridge University Press:  20 January 2017

Anna Osiecka
Affiliation:
North Florida Research and Educational Center, University of Florida, 155 Research Road, Quincy, FL 32351
Patrick J. Minogue*
Affiliation:
North Florida Research and Educational Center, University of Florida, 155 Research Road, Quincy, FL 32351
*
Corresponding author's E-mail: [email protected].

Abstract

A study was conducted to refine herbicide rates for sequential applications of sulfometuron methyl over newly planted Eucalyptus benthamii seedlings in the Coastal Plain of the southeastern United States. Container-grown, 6-wk-old seedlings were planted in July 2011 on a nonbedded agricultural site in Quincy, FL and on a bedded forestry site in Wing, AL. Treatments included a single sulfometuron application at 13, 26, 39, or 52 g ha−1, 2 wk after planting; sequential applications at the same rates, 2 and 8 wk after planting; and a nontreated check. All sulfometuron treatments provided effective control of all vegetation groups at both sites, with the exception of 13 g ha−1 for forbs in Quincy. Sparse weed cover in Wing was eliminated by any sulfometuron treatment. In Quincy, two applications provided better weed control than a single one, resulting in more bare ground and less grass and vines. Bare ground increased with increasing sulfometuron rate from 0 to 26 g ha−1. The 26 g ha−1 rate resulted in 95 and 88% bare ground 6 and 12 wk after the first application, respectively, compared to 62 and 51%, respectively for the nontreated check. All sulfometuron treatments had a small positive effect on Eucalyptus seedling growth at the Quincy site, resulting in greater stem diameter (6.0 to 6.7 mm) than the nontreated check (5.0 mm), despite slight foliar necrosis. At the Wing site, in addition to slight foliar necrosis, sulfometuron decreased final seedling survival, height, and stem diameter (48 to 68%, 77.8 to 81.6 cm, and 8.7 to 9.2 mm, respectively), compared to the nontreated check (99%, 88.3 cm and 11.2 mm, respectively). Two sulfometuron applications at 13 to 26 g ha−1 provided selective weed control at both sites, but further refinement is needed for various Eucalyptus genotypes, soil, and vegetation types.

Se realizó un estudio para refinar las dosis de herbicida para aplicaciones secuenciales de sulfometuron methyl sobre plántulas de Eucalyptus benthamii recién plantadas en las planicies de la costa del sureste de los Estados Unidos. Plántulas de 6 semanas de edad, crecidas en contenedores, fueron plantadas en Julio 2011 en un terreno agrícola sin camas de siembra en Quincy, Florida, y en un terreno forestal con camas de siembra en Wing, Alabama. Los tratamientos incluyeron una aplicación sencilla de sulfometuron a 13, 26, 39, ó 52 g ha−1, 2 semanas después de la siembra; aplicaciones secuenciales a las mismas dosis, 2 y 8 semanas después de la siembra; y un testigo sin tratamiento. Todos los tratamientos de sulfometuron brindaron un control efectivo de todos los grupos de vegetación en ambos terrenos, con excepción de 13 g ha−1 para el control de especies herbáceas de hoja ancha, en Quincy. En Wing, cualquiera de los tratamientos de sulfometuron eliminó malezas con cobertura escaza. En Quincy, dos aplicaciones brindaron un mejor control de malezas que una sola aplicación, lo que resultó en más suelo desnudo y menos gramíneas y enredaderas. El suelo desnudo aumentó con el incremento de la dosis de sulfometuron de 0 a 26 g ha−1. La dosis de 26 g ha−1 resultó en 95 y 88% de suelo desnudo a 6 y 12 semanas después de la primera aplicación, respectivamente, al comparase con 62 y 51%, respectivamente del testigo sin tratamiento. Todos los tratamientos de sulfometuron tuvieron un pequeño efecto positivo en el crecimiento de las plántulas de Eucalyptus en Quincy, lo que resultó en un diámetro de tallo mayor (6.0 a 6.7 mm) que el testigo sin tratamiento (5.0 mm), a pesar de que hubo una ligera necrosis foliar. En Wing, además de la ligera necrosis foliar, sulfometuron disminuyó la sobrevivencia final, la altura, y el diámetro de tallo (48 a 68%, 77.8 a 81.6 cm, y 8.7 a 9.2 mm, respectivamente), al compararse con el testigo sin tratamiento (99%, 88.3 cm y 11.2 mm, respectivamente). Dos aplicaciones de sulfometuron a 13 y 26 g ha−1 brindaron control de malezas selectivo, pero se necesitan aún más refinamientos para varios genotipos de Eucalyptus, y tipos de suelo y vegetación.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, P, Beadle, C, Mendham, N, Smethurst, P (2003) The impact of timing and duration of grass control on growth of young Eucalyptus globulus Labill plantation. New For 26:147165 Google Scholar
Anonymous (2013) DuPont™ Oust® XP herbicide specimen label. DuPont Publication No. SL-1444 041410. Wilmington, DE: DuPont. 16 p. http://www.cdms.net/LDat/ld5FQ017.pdf. Accessed February 24, 2015Google Scholar
Anonymous (2015) Alligare SFM 75 herbicide specimen label. Opelika, AL: Alligare, LLC. 6 p. http://pdf.tirmsdev.com/Web/555/38214/555_38214_LABEL_English_.pdf?download=true. Accessed February 24, 2015Google Scholar
Blazier, MA, Johnson, J, Taylor, EL, Osbon, B (2012) Herbicide site preparation and release options for eucalyptus plantation establishment in the western gulf. Pages 1923 in Proceedings of the 16th Biennial Southern Silvicultural Research Conference. Ashville, NC U.S. Department of Agriculture, Forest Service, Southern Research Station Google Scholar
Boerboom, C, Owen, M (2006) Facts about glyphosate-resistant weeds. Perdue Extension. The Glyphosate, Weeds, and Crops series. GWC-1. 8 p. https://www.extension.purdue.edu/extmedia/gwc/gwc-1.pdf. Accessed February 24, 2015Google Scholar
Boland, DJ, Brooker, MIH, Chippendale, GM, Hall, N, Hyland, BPM, Johnston, RD, Kleining, DA, McDonald, MW, Turner, JD (2006) Forest Trees of Australia. 5th edn Collingwood, Victoria, Australia: CSIRO Publishing. Pp 396397 Google Scholar
Campbell, MH, Nicol, HI (1998) Tolerance of tree seedlings to pre- and post-emergence herbicides. Pages 2023 in Proceedings of the 9th Australian Agronomy Conference. Wagga Wagga, New South Wales, Australia Australian Society of Agronomy Google Scholar
Churchill, K, Beadle, C (2011) “Eucmix”: An Evaluation of the Feasibility of Using a Selective Residual Herbicide to Control Weeds in Direct-Seeding Revegetation Trials. Hobart, Australia: Cooperative Research Centre for Forestry Technical Report 192. 8 pGoogle Scholar
Coll, L, Balandier, P, Picon-Cochard, C (2004) Morphological and physiological responses of beech (Fagus sylvatica) seedlings to grass-induced belowground competition. Tree Physiol 24:4554 Google Scholar
Coppen, JJ, ed (2005) Eucalyptus. The Genus Eucalyptus . Taylor & Francis e-Library. 450 pGoogle Scholar
[DE] Department of the Environment (2014) Eucalyptus benthamii in Species Profile and Threats Database. Canberra, Australia: Department of the Environment. http://www.environment.gov.au/cgi-bin/sprat/public/publicspecies.pl?taxon_id=2821#distribution. Accessed February 24, 2015Google Scholar
Dougherty, D, Wright, J (2012) Silviculture and economic evaluation of eucalypt plantations in the southern US. BioResoures 7:19942001 Google Scholar
Florence, RG (2004) Ecology and silviculture of eucalypt forests. Collingwood, Victoria, Australia: CSIRO. 413 pGoogle Scholar
Florentine, S, Fox, J (2003) Competition between Eucalyptus vitrix seedlings and grass species. Ecol Res 18:2539 Google Scholar
Fremlin, RRA, Misic, D (1999) Economics of second year weed-control in Eucalyptus globulus plantations established for chipwood-production in Western Australia. Pages 165169 in Proceedings 18th Biennial Conference of the Institute of Foresters of Australia. Hobart, Tasmania, Australia Google Scholar
Garau, AM, Ghersa, CM, Lemcoff, JH, Barañao, JJ (2009) Weeds in Eucalyptus globulus subsp. maidenii (F. Muell) establishment: effects of competition on sapling growth and survivorship. New For 37:251264 Google Scholar
Garau, AM, Lemcoff, JH, Ghersa, CM, Beadle, CL (2008) Water stress tolerance in Eucalyptus globulus Labill. subsp. maidenii (F. Muell.) saplings induced by water restrictions imposed by weeds. For Ecol Manage 255:28112819 Google Scholar
George, BH, Brennan, PD (2002) Herbicides are more cost-effective than alternative weed control methods for increasing early growth of Eucalyptus dunnii and Eucalyptus saligna . New For 24:147163 Google Scholar
Gonçalves, JLM, Stape, JL, Laclau, JP, Smethurst, P, Gava, JL (2004) Silvicultural effects on the productivity and wood quality of eucalypt plantations. For Ecol Manage 193:4561 Google Scholar
Gordon, DR, Flory, SL, Cooper, AL, Morris, SK (2012) Assessing the invasion risk of Eucalyptus in the United States using the Australian weed risk assessment. Int J For Res. Article ID 203768 DOI: . 7 pGoogle Scholar
Kozlowski, TT, Kramer, PJ, Pallardy, SG (1991) The physiological ecology of woody plants. San Diego, CA: Academic Press. 657 pGoogle Scholar
Lange, AH (1987) Comparative phytotoxicity studies in trees and vines. Pages 210212 in Proceedings of the 39th Annual California Weed Conference Google Scholar
Little, KM, Van Staden, J, Clarke, GPY (2003) Eucalyptus grandis × E. camaldulensis variability and intra-genotypic competition as a function of different vegetation management treatments. New For 25:227242 Google Scholar
[NOAA] National Oceanic and Atmospheric Administration (2002a) Monthly station normals of temperature, precipitation, and heating and cooling degree days 1971–2000. in Limatography of the United States No. 81.01—Alabama. National Climatic Data Center/NESDIS/NOAA, Asheville, NC. http://cdo.ncdc.noaa.gov/climatenormals/clim81/ALnorm.pdf. Accessed February 24, 2015Google Scholar
[NOAA] National Oceanic and Atmospheric Administration (2002b) Monthly station normals of temperature, precipitation, and heating and cooling degree days 1971–2000. in Limatography of the United States No. 81.08—Florida. National Climatic Data Center/NESDIS/NOAA, Asheville, NC. http://cdo.ncdc.noaa.gov/climatenormals/clim81/FLnorm.pdf. Accessed February 24, 2015Google Scholar
Neilsen, WA, Ringrose, C (2001) Effect of initial herbicide treatment and planting material on woody weed development and growth of Eucalyptus nitens and Eucalyptus regnans . Weed Res 41:301309 Google Scholar
Osiecka, A, Minogue, P (2013) Herbicides for weed control in Eucalyptus culture. University of Florida Cooperative Extension Service Publication #FOR310. 8 p. http://edis.i#fas.ufl.edu/fr378. Accessed February 24, 2015Google Scholar
Osiecka, A, Minogue, PJ (2011) Preliminary results: development of selective weed control treatments for establishment of Eucalyptus urograndis (FTE) and Eucalyptus benthamii plantations. Quincy, FL: Institute of Food and Agricultural Sciences, North Florida Research and Education Center Research Report 2011-01. 14 pGoogle Scholar
Pires, RN, Pereira, FCM, Nepomuceno, MP, Alves, PLCA (2013) Effects of the simulated drift of ripeners on Eucalyptus urograndis . J Agric Sci 5:7886 Google Scholar
Rockwood, DL, Peter, GF (2011) Eucalyptus and Corymbia species for pulpwood, mulchwood, energywood, windbreaks, and/or phytoremediation. University of Florida Cooperative Extension Service Publication #CIR1194. 7 p. http://edis.ifas.ufl.edu/fr013. Accessed February 24, 2015Google Scholar
Santos, LDT, Meira, RMSA, Ferreira, FA, Sant'Anna-Santos, BF, Ferreira, LR (2007) Morphological responses of different eucalypt clones submitted to glyphosate drift. Environ Exp Bot 59:1120 Google Scholar
[SAS] Statistical Analysis Systems Institute, Inc. (2007) SAS/STAT® 9.3. Cary, NC: SAS Institute, Inc. Google Scholar
Schaller, M, Schroth, G, Beer, J, Jimenez, F (2003) Root interactions between young Eucalyptus deglupta trees and competitive grass species in contour strips. For Ecol Manage 179:429440 Google Scholar
Schönau, APG (1984) Silvicultural considerations for high productivity of Eucalyptus grandis . For Ecol Manage 9:295314 Google Scholar
Semple, B, Koen, T (2006) Effect of some selective herbicide oversprays on newly emerged eucalypt and hopbush seedlings in Central Western New South Wales. Ecol Manag Restor 7:4550 Google Scholar
Shaner, DL, ed (2014) Herbicide Handbook, 10th edn. Lawrence, KS: Weed Science Society of America. Pp 425426 Google Scholar
Stape, JL, Fox, T, Albaugh, T, Alvarez, J, Rubilar, R (2012) Potential Eucalyptus species and the required silvicultural system for biomass production in the ecological regions of the Southeastern United States. 2012 Woody Crops Conference. Oak Ridge, TN North Carolina State University & Forest Productivity Cooperative. 54 p. http://www.woodycrops.org/NR/rdonlyres/B3645F29-CA4D-4F49-AE4A-8612EDC48D7B/3551/2Stape.pdf. Accessed February 24, 2015Google Scholar
Turnbull, CRA, Beadle, CL, West, PW, Ottenschlaeger, ML (1994) Effect of post-planting applications of granulated atrazine and fertiliser on the early growth of Eucalyptus nitens New For 8:323333 Google Scholar
[USDA-NRCS] U.S. Department of Agriculture, Natural Resources Conservation Service (2014) Web Soil Survey. http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm. Accessed February 24, 2015Google Scholar