Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T23:00:02.842Z Has data issue: false hasContentIssue false

Modeling the Simultaneous Evolution of Resistance to ALS- and ACCase-Inhibiting Herbicides in Barnyardgrass (Echinochloa crus-galli) in Clearfield® Rice

Published online by Cambridge University Press:  20 January 2017

Muthukumar V. Bagavathiannan*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701
Kenneth L. Smith
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701
Paul Neve
Affiliation:
School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
*
Corresponding author's E-mail: [email protected].

Abstract

Herbicide-resistant barnyardgrass has become widespread in the rice production systems of the midsouthern United States, leaving few effective herbicide options for controlling this weed. The acetolactate synthase (ALS)- and acetyl-CoA carboxylase (ACCase)-inhibiting herbicides remain largely effective in Clearfield® rice production, but strategies need to be developed to protect the long-term utility of these options. A two-trait model was developed to understand simultaneous evolution of resistance in barnyardgrass to the ALS- and ACCase-inhibiting herbicides in Clearfield rice. The model was used to predict resistance under a number of common weed management scenarios across 1,000 hypothetical rice fields in the Mississippi Delta region and answer some key management questions. Under an ALS inhibitor–only program consisting of three annual applications of imidazolinone herbicides (imazethapyr or imazamox) in continuous Clearfield rice, resistance was predicted within 4 yr with 80% risk by year 30. Weed management programs that consisted of ALS- and ACCase-inhibiting herbicides such as fenoxaprop and cyhalofop greatly reduced the risk of ALS-inhibiting herbicide resistance (12% risk by year 30), but there was a considerable risk for ACCase resistance (evolving by year 14 with 13% risk by year 30) and multiple resistance (evolving by year 16 with 11% risk by year 30) to both of these mechanisms of action. A unique insight was that failure to stop using a herbicide soon after resistance evolution can accelerate resistance to the subsequent herbicide option. Further, a strong emphasis on minimizing seedbank size is vital for any successful weed management strategy. Results also demonstrated that diversifying management options is not just adequate, but diversity combined with timely herbicide applications aimed at achieving high efficacy levels possible is imperative.

Echinochloa crus-galli resistente a herbicidas se ha esparcido ampliamente en los sistemas de producción de arroz del centro-sur de los Estados Unidos, dejando pocas opciones efectivas de herbicidas para el control de esta maleza. Los herbicidas inhibidores de acetolactate synthase (ALS) y de acetyl-CoA carboxylase (ACCase) continúan siendo efectivos en la producción de arroz Clearfield®, pero se necesita desarrollar estrategias para proteger la utilidad de estas opciones en el largo plazo. Se desarrolló un modelo de dos caracteres para entender la evolución simultánea de resistencia a herbicidas inhibidores de ALS y ACCase en E. crus-galli en arroz Clearfield. El modelo fue usado para predecir la resistencia bajo un número de escenarios comunes de manejo de malezas en 1,000 campos hipotéticos de arroz en la región del Delta del Mississippi y así poder contestar algunas preguntas clave para el manejo. Bajo un programa de solamente inhibidores ALS consistiendo de tres aplicaciones anuales de herbicidas imidazolinone (imazethapyr o imazamox) en arroz Clearfield continuo, se predijo la aparición de resistencia después de 4 años con un 80% de riesgo en el año 30. Los programas de manejo de malezas que consistieron de herbicidas inhibidores ALS y ACCase tales como fenoxaprop y cyhalofop redujeron ampliamente el riesgo de resistencia a herbicidas inhibidores ALS (12% de riesgo en el año 30), pero hubo un riesgo considerable de resistencia a ACCase (evolucionando en el año 14 con un 13% de riesgo en el año 30) y resistencia múltiple para ambos mecanismos de acción (evolucionando en el año 16 con un 11% de riesgo en el año 30). Un descubrimiento único fue que la falla en detener el uso del herbicida inmediatamente después de la evolución de la resistencia puede acelerar la resistencia a la siguiente opción de herbicidas. Además, un énfasis fuerte en minimizar el tamaño del banco de semillas es vital para el éxito de cualquier estrategia de manejo de malezas. Los resultados no es solo demostraron que el diversificar las opciones de manejo es adecuado, pero que es imperativo el combinar diversidad con aplicaciones de herbicidas en el momento adecuado para alcanzar los niveles de eficacia más altos posibles.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bagavathiannan, MV, Norsworthy, JK (2012) Late-season seed production in arable weed communities: management implications. Weed Sci 60:325334 Google Scholar
Bagavathiannan, MV, Norsworthy, JK, Smith, KL (2012a) Post-dispersal herbivory of selected weed seeds as affected by residue cover. n Proceedings of the Weed Science Society of America Meeting. Waikoloa, HI: Weed Science Society of America Google Scholar
Bagavathiannan, MV, Norsworthy, JK, Smith, KL (2012b) Weed seed decay as affected by depth and duration of seed burial. in Proceedings of the Weed Science Society of America Meeting. Waikoloa, HI: Weed Science Society of America Google Scholar
Bagavathiannan, MV, Norsworthy, JK, Smith, KL, Burgos, NR (2011a) Seedbank size and emergence pattern of barnyardgrass (Echinochloa crus-galli) in Arkansas. Weed Sci 59:359365 Google Scholar
Bagavathiannan, MV, Norsworthy, JK, Smith, KL, Neve, P (2011b) Seed production of barnyardgrass (Echinochloa crus-galli) in response to time of emergence in cotton and rice. J Agric Sci 150:717724 Google Scholar
Bagavathiannan, MV, Norsworthy, JK, Smith, KL, Neve, P (2011c) Density dependent growth and reproduction in barnyardgrass (Echinochloa crus-galli). Page 131 in Proceedings of the Southern Weed Science Society Meeting. San Juan, PR: Southern Weed Science Society Google Scholar
Bagavathiannan, MV, Norsworthy, JK, Smith, KL, Neve, P (2012c) Pollen-mediated gene flow in barnyardgrass. Page 166 in Proceedings of the Southern Weed Science Society Meeting. Charleston, SC: Southern Weed Science Society Google Scholar
Blouin, DC, Webster, EP, Bond, JA (2010) On a method of analysis for synergistic and antagonistic joint-action effects with fenoxaprop mixtures in rice (Oryza sativa). Weed Technol 24:583589 Google Scholar
Burgos, NR, Norsworthy, JK, Scott, RC, Smith, KL (2008) Red rice (Oryza sativa) status after 5 years of imidazolinone-resistant rice technology in Arkansas. Weed Technol 22:200208 Google Scholar
Carey, VF, Hoagland, RE, Talbert, RE (1995) Verification and distribution of propanil-resistant barnyardgrass (Echinochloa crus-galli) in Arkansas. Weed Technol 9:366372 Google Scholar
de Prado, JL, Osuna, MD, de Prado, R (2004) Cross resistance to ACCase herbicide in Lolium rigidum . Commun Agric Appl Biol Sci 69:97102 Google Scholar
Egley, GH, Chandler, JM (1978) Germination and viability of weed seeds after 2.5 years in a 50-year buried seed study. Weed Sci 26:230239 Google Scholar
Hardke, JT, Wilson, CE Jr. (2012) Trends in Arkansas Rice Production. Pages 3847 in Wells, BR ed. Arkansas Rice Research Studies 2012. http://arkansasagnews.uark.edu/609-2.pdf. Accessed Oct 8, 2013Google Scholar
Hartzler, B (2001) Variable Herbicide Performance. http://www.weeds.iastate.edu/mgmt/2001/ variableperformance.htm. Accessed May 20, 2013Google Scholar
Jasieniuk, M, Brule-Babel, AL, Morrison, IN (1996) The evolution and genetics of herbicide resistance in weeds. Weed Sci 44:176193 Google Scholar
Johnson, DE, Dingkuhn, M, Jones, MP, Mahamane, MC (1998) The influence of rice plant type on the effect of weed competition on O. sativa and O. glaberrima . Weed Res 38:207216 Google Scholar
Jordan, DL, York, AC, Griffin, JL, Clay, PA, Vidrine, PR, Reynolds, DB (1997) Influence of application variables on efficacy of glyphosate. Weed Technol 11:354362 Google Scholar
Kohanski, MA, DePristo, MA, Collins, JJ (2010) Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 37:311320 Google Scholar
Lovelace, ML, Talbert, RE, Schmidt, RE, Scherder, ER, Reaper, JR (2000) Multiple resistance of propanil-resistant barnyardgrass (Echinochloa crus-galli) to quinclorac. Page 153 in Proceedings of the 28th Rice Technical Working Group Meeting. Biloxi, MS: Rice Technical Working Group Google Scholar
Matocha, MA, Krutz, LJ, Senseman, SA, Koger, CH, Reddy, KN, Palmer, EW (2006) Spray carrier pH effect on absorption and translocation of trifloxysulfuron in Palmer amaranth (Amaranthus palmeri) and Texasweed (Caperonia palustris). Weed Sci 54:969973 Google Scholar
Maun, MA, Barrett, SCH (1986) The biology of Canadian weeds. 77. Echinochloa crus-galli (L.) Beauv. Can J Plant Sci 66:739759 Google Scholar
McMullan, PM (1996) Grass herbicide efficacy as influenced by adjuvant, spray solution pH, and ultraviolet light. Weed Technol 10:7277 Google Scholar
Mitch, LW (1990) Barnyardgrass. Weed Technol 4:918920 Google Scholar
Neve, P, Diggle, AJ, Smith, FP, Powles, SB (2003) Simulating evolution of glyphosate resistance in Lolium rigidum I: population biology of a rare resistance trait. Weed Res 43:404417 Google Scholar
Neve, P, Norsworthy, JK, Smith, KL, Zelaya, I (2011) Modelling evolution and management of glyphosate resistance in Amaranthus palmeri . Weed Res 51:99112 Google Scholar
Neve, P, Powles, SB (2005) Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum . Theor Appl Genet 110:11541166 Google Scholar
Norsworthy, JK, Bond, J, Scott, R (2013) Weed management practices and needs in Arkansas and Mississippi rice. Weed Technol. 27:623630.Google Scholar
Norsworthy, JK, Burgos, NR, Scott, RC, Smith, KL (2007) Consultant perspectives on weed management needs in Arkansas rice. Weed Technol 21:832839 Google Scholar
Norsworthy, JK, Scott, R, Smith, K, Still, J, Estorninos, L Jr., Bangarwa, S (2009) Confirmation and management of clomazone-resistant barnyardgrass in rice. Page 210 in Proceedings of the Southern Weed Science Society Meeting. Orlando, FL: Southern Weed Science Society Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60(Suppl):3162 Google Scholar
Ogg, AG Jr., Dawson, JH (1984) Time of emergence of 8 weed species. Weed Sci 32:327335 Google Scholar
Riar, DS, Norsworthy, JK, Bond, JA, Bararpour, MT, Wilson, MJ, Scott, RC (2012) Resistance of Echinochloa crus-galli populations to acetolactate synthase-inhibiting herbicides. Intl J Agron DOI: Google Scholar
Spokas, K, Forcella, F (2009) Software tools for weed seed germination modeling. Weed Sci 57:216227 Google Scholar
Stewart, CL, Nurse, RE, Sikkema, PH (2009) Time of day impacts postemergence weed control in corn. Weed Technol 23:346355 Google Scholar
Talbert, RE, Carey, VF III, Kitt, MJ, Helms, RS, Black, HL (1995) Control, biology and ecology of propanil-resistant barnyardgrass. Pages 2331 in Wells, BR, ed. Arkansas Rice Research Studies 1994. Fayetteville, AR: Arkansas Agricultural Experiment Station, University of Arkansas Research Series 446Google Scholar
Weatherunderground (2012) Weather Forecast and Reports. http://www.wunderground.com. Accessed November 12, 2012Google Scholar
Wiese, AM, Binning, LK (1987) Calculating the threshold temperature of development for weeds. Weed Sci 35:177179 Google Scholar
Wilson, C (2011) Sustaining the value of Clearfield. http://www.ricefarming.com/home/issues/2011-03/2011_MarSS.html. Accessed May 17, 2013Google Scholar
Wilson, MJ, Norsworthy, JK, Johnson, DB, McCallister, EK, DeVore, JD, Griffith, GM, Bangarwa, SK (2010) Herbicide programs for controlling ALS-resistant barnyardgrass in Clearfield rice. In: Proceedings of the Rice Technical Working Group Meeting. Biloxi, MS: Rice Technical Working Group Google Scholar
Yu, Q, Abdallah, I, Han, H, Owen, M, Powles, S (2009) Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum . Planta 230:713723 Google Scholar
Yu, Q, Han, H, Cawthray, GR, Wang, SF, Powles, SB (2013) Enhanced rates of herbicide metabolism in low herbicide-dose selected resistant Lolium rigidum . Plant Cell Environ 36:818827 Google Scholar
Zhang, W, Webster, EP, Blouin, DC (2005) Response of rice and barnyardgrass (Echinochloa crus-galli) to rates and timings of clomazone. Weed Technol 19:528531 Google Scholar