Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T15:51:56.932Z Has data issue: false hasContentIssue false

Herbicide Combinations for Control of Volunteer Potato

Published online by Cambridge University Press:  20 January 2017

Rebecca M. Koepke-Hill
Affiliation:
Plant Sciences, University of Tennessee, Knoxville, TN 37996
Gregory R. Armel*
Affiliation:
Plant Sciences, University of Tennessee, Knoxville, TN 37996
Henry P. Wilson
Affiliation:
Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA 23420
Thomas E. Hines
Affiliation:
Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA 23420
Javier J. Vargas
Affiliation:
Plant Sciences, University of Tennessee, Knoxville, TN 37996
*
Corresponding author's E-mail: [email protected].

Abstract

Field studies were conducted to determine if POST applications of the p-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors mesotrione (105 g ai/ha), topramezone (18 g ai/ha), and tembotrione (92 g ai/ha) applied alone and in mixtures with the photosystem-II (PSII) inhibitors atrazine (560 g ai/ha), bentazon (560 g ai/ha), or bromoxynil (280 g ai/ha) would control volunteer potato. Mesotrione alone controlled potato 62%, but topramezone and tembotrione only provided 10 to 22% control by 6 wk after treatment (WAT). All PSII inhibitors applied alone provided less than 36% control of potato. Overall, mixtures of PSII inhibitors plus mesotrione improved initial potato control by 2 WAT; however, by 6 WAT, few differences were observed between mesotrione applied alone or in mixtures with PSII inhibitors. PSII inhibitors did not always improve activity of topramezone or tembotrione on potato, and in some instances appeared to antagonize control. HPPD inhibitors applied alone or in combinations with PSII inhibitors reduced potato yields in comparison to the untreated check.

Se realizaron algunos estudios de campo para determinar si las aplicaciones posteriores de inhibidores p-hydroxy phenylpyruvate dioxygenase (HPPD) de mesotrione (105 g ia/ha), topramezone (18 g ia/ha) y tembotrione (92 g ia/ha aplicados por sí solos o con mezclas de inhibidores fotosistemáticos-II (PSII) de atrazine (560 g ia/ha), bentazon (560 g ia/ha) o bromoxynil (280 g ia/ha) controlarían la papa silvestre. El mesotrione por sí solo controló la maleza en un 62% mientras que el topramezone y el tembotrione solamente proporcionaron del 10 al 22% de control para la sexta semana después del tratamiento (WAT). Todos los inhibidores PSII aplicados por sí solos proporcionaron menos del 36% del control de la papa silvestre. En general todas las mezclas de inhibidores de PSII más mesotrione mejoraron inicialmente el control de la maleza para la segunda semana después del tratamiento (2-WAT). Sin embargo, para las 6 semanas después del tratamiento (WAT), pocas diferencias se observaron entre mesotrione aplicado por sí solo o mezclado con inhibidores PSII. Los inhibidores PSII no siempre mejoraron la actividad de topramezone o tembotrione en la papa silvestre, y en algunas instancias pareció antagonizar el control. Los inhibidores HPPD aplicados por sí solos o en combinaciones con inhibidores PSII redujeron el rendimiento de la papa en comparación con el testigo no tratado.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abendroth, J. A., Martin, A. R., and Roeth, F. W. 2006. Plant response to combinations of mesotrione and photosystem II inhibitors. Weed Technol 20:267274.Google Scholar
Alexander, S. A., Caldwell, J. S., Hohlt, H. E., Nault, B. A., O'Dell, C. R., Sterrett, S. B., and Wilson, H. P. 2000. Plant nutrient recommendations based on soil tests for vegetable crop production. Pages 2829. in. Commercial Vegetable Production Recommendations. Virginia Tech Extension Publication 456–420, Blacksburg, VA.Google Scholar
Armel, G. R., Wilson, H. P., Richardson, R. J., Whaley, C. M., and Hines, T. E. 2008. Mesotrione combinations with atrazine and bentazon for yellow and purple nutsedge (Cyperus esculentus and C. rotundus) control in corn. Weed Technol 22:391396.Google Scholar
Bollman, J. D., Boerboom, C. M., Becker, R. L., and Fritz, V. A. 2008. Efficacy and tolerance to HPPD inhibiting herbicides in sweet corn. Weed Technol 22:666674.Google Scholar
Boydston, R. A. 2001. Volunteer potato (Solanum tuberosum) control with herbicides and cultivation in field corn (Zea mays). Weed Technol 15:461466.Google Scholar
Boydston, R. A. 2004. Managing volunteer potato (Solanum tuberosum) in field corn (Zea mays) with carfentrazone-ethyl and dicamba. Weed Technol 18:8387.Google Scholar
Boydston, R. A., Collins, H. P., and Alva, A. K. 2008. Control of volunteer potato (Solanum tuberosum) in sweet corn with mesotrione is unaffected by atrazine and tillage. Weed Technol 22:654659.Google Scholar
Boydston, R. A., Seymour, M. D., Brown, C. R., and Alva, A. K. 2006. Freezing behavior of potato (Solanum tuberosum), cultivar ‘Russet Burbank’ tubers in soil. Am. Potato J 83:305315.Google Scholar
Boydston, R. A. and Williams, M. M. II. 2005. Managing volunteer potato (Solanum tuberosum) in field corn with mesotrione and arthropod herbivory. Weed Technol 19:443450.Google Scholar
Johnson, B. C. and Young, B. G. 2002. Influence of temperature and relative humidity on the foliar activity of mesotrione. Weed Sci 50:157161.Google Scholar
Mitchell, G., Bartless, D. W., Fraser, T. E. M., Hawkes, T. B., Holt, D. C., Towson, J. K., and Wichert, P. A. 2001. Mesotrione: a new selective herbicides for use in maize. Pest Manag. Sci 57:120128.Google Scholar
Steiner, C. M., Newberry, G., Boydston, R., Yenish, J., and Thorton, R. 2005. Volunteer Potato Management in the Pacific Northwest Rotational Crops. http://cru.cahe.wus.edu/CEPublications/eb1993/eb1993.pdf. Accessed: March 25, 2009.Google Scholar
Thomas, P. E. 1983. Sources and dissemination of potato viruses in the Columbia Basin of the Northwest U.S. Plant Dis 67:744747.Google Scholar
Wichert, R. A., Bozsa, R., Talbert, R. E., and Oliver, L. R. 1992. Temperature and relative humidity effects on diphenylether herbicides. Weed Technol 6:1924.Google Scholar
Williams, M. M. II, Ransom, C. V., and Thompson, W. M. 2004. Effect of volunteer potato density on bulb onion yield and quality. Weed Sci 52:754758.Google Scholar
Wright, G. C. and Bishop, G. W. 1981. Volunteer potatoes as a source of potato leafroll virus and potato virus X. Am. Potato J 58:603609.Google Scholar