Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T04:44:20.526Z Has data issue: false hasContentIssue false

Effects of Simulated Rainfall on Disease Development and Weed Control of the Bioherbicidal Fungi Alternaria cassiae and Colletotrichum truncatum

Published online by Cambridge University Press:  20 January 2017

C. Douglas Boyette*
Affiliation:
USDA-ARS, Southern Weed Science Research Unit, Stoneville, MS 38776
Charles T. Bryson
Affiliation:
USDA-ARS, Southern Weed Science Research Unit, Stoneville, MS 38776
Robert E. Hoagland
Affiliation:
USDA-ARS, Southern Weed Science Research Unit, Stoneville, MS 38776
Mark A. Weaver
Affiliation:
USDA-ARS, Southern Weed Science Research Unit, Stoneville, MS 38776
*
Corresponding author's email: [email protected]

Abstract

Alternaria cassiae and Colletotrichum truncatum are bioherbicidal pathogens of sicklepod, and hemp sesbania, respectively. The effects of simulated rainfall followed by 12 h simulated dew application, immediately or delayed by 1 to 4 h, on disease severity and weed control were studied for each pathogen on its weed host under greenhouse conditions. After each simulated rainfall event, treated plants were placed in a dew chamber for 12 h. Regardless of rainfall amount and/or timing, only slight differences occurred on A. cassiae disease severity and sicklepod control (85 to 100% for both parameters). However, when similar tests were imposed on C. truncatum, disease severity and hemp sesbania control were highly variable, ranging from 5 to 100%. Regardless of rainfall amount, disease development and control of hemp sesbania were greatly reduced (60%) when dew application was delayed by only 1 h following inoculation, regardless of rainfall treatment. Rainfall at 1.27 and 2.58 cm had little effect on disease development and control in hemp sesbania, but the effect of transfer time to dew application exhibited a greater role on these parameters. Thus the time between bioherbicide application and dew application was more important for C. truncatum than for A. cassiae. These results indicate that rainfall amounts and the timing of dew application caused differential effects on disease severity and weed control after application of these bioherbicides to their target weeds.

Alternaria cassiae y Colletotrichum truncatum son patógenos bioherbicidas de Senna obtusifolia y Sesbania exaltata, respectivamente. Se realizó un estudio bajo condiciones de invernadero para evaluar los efectos de lluvia simulada seguida inmediatamente o con retraso de 1a 4 h por 12 h de aplicación de rocío simulado, sobre la severidad de las enfermedades y el control de malezas para cada patógeno en su maleza hospedera. Después de cada lluvia simulada, las plantas tratadas se colocaron en una cámara de rocío por 12 h. Sin importar la cantidad de lluvia y/o el momento de aplicación, en A. cassiae solo ocurrieron leves diferencias en la severidad de las enfermedades y en el control de S. obtusifolia (85–100% para ambos parámetros). Sin embargo, cuando pruebas similares se impusieron a C. truncatum, la severidad de las enfermedades y el control de S. exaltata fueron altamente variables, con un rango de 5 a 100%. Sin importar la cantidad de lluvia, el desarrollo de la enfermedad y el control de la S. exaltata se redujeron dramáticamente (60%), cuando la aplicación de rocío se retrasó por solamente 1 h después de la inoculación, sin importar el tratamiento con lluvia. La lluvia a 1.27 y 2.58 cm tuvo poco efecto en el desarrollo de la enfermedad y en el control en S. exaltata, pero el efecto del tiempo entre transferencia y la aplicación de rocío jugó un papel más importante en estos parámetros. De tal manera, el tiempo entre la aplicación del bioherbicida y la del rocío fue más importante para C. truncatum que para A. cassiae. Estos resultados indican que las cantidades de lluvia y el momento de la aplicación del rocío causaron efectos diferenciales en la severidad de las enfermedades y el control de maleza después de la aplicación de estos bio-herbicidas a la maleza destino.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahimera, N., Gisler, S., Morgan, D. P., and Micailides, T. J. 2004. Effects of single-drop impactions of the dispersal of Botryosphaeria dothidea conidia. Phytopathology 94:11891197.Google Scholar
Auld, B. A. 1993. Vegetable oil suspension emulsions reduce dew dependence of a mycoherbicide. Crop Protect. 12:477479.Google Scholar
Bakerspigel, A. 1953. Soils as a storage medium for fungi. Mycologia 45:596604.CrossRefGoogle Scholar
Boyette, C. D. 1991. Host range and virulence of Colletotrichum truncatum, a potential mycoherbicide for hemp sesbania (Sesbania exaltata). Plant Dis. 75:6264.Google Scholar
Boyette, C. D. 1994. Unrefined corn oil improves the mycoherbicidal activity of Colletotrichum truncatum for hemp sesbania (Sesbania exaltata) control. Weed Technol. 8:526529.CrossRefGoogle Scholar
Boyette, C. D., Hoagland, R. E., and Weaver, M. A. 2007. Biocontrol efficacy of Colletotrichum truncatum for hemp sesbania (Sesbania exaltata) is enhanced with unrefined corn oil and surfactant. Weed Biol. Mgt. 7:7076.CrossRefGoogle Scholar
Boyette, C. D., Quimby, P. C. Jr., Bryson, C. T., Egley, G. H., and Fulgham, F. E. 1993. Biological control of hemp sesbania (Sesbania exaltata) under field conditions with Colletotrichum truncatum formulated in an invert emulsion. Weed Sci. 41:497500.Google Scholar
Bryson, C. T. 1988. Effects of rainfall on foliar herbicides applied to seedling johnsongrass (Sorghum halepense). Weed Technol. 2:153158.Google Scholar
Carrol, M. J., Hill, R. L., Pfeil, E., and Herner, A. E. 1993. Washoff of dicamba and 3,6-dichlorosalicylic acid from turfgrass foliage. Weed Technol. 7:437442.Google Scholar
Charudattan, R., Shabana, Y. A., DeValerio, J. T., and Rosskopf, E. N. 1995. Broad-spectrum bioherbicide to control several species of pigweeds and methods of use. U.S. patent 5393728.Google Scholar
Egley, G. H. and Boyette, C. D. 1995. Water–corn oil emulsion enhances conidia germination and mycoherbicidal activity of Colletotrichum truncatum . Weed Sci. 43:312317.Google Scholar
Feng, P.C.C., Sandbrink, J. J., and Sammons, R. D. 2000. Retention, uptake, and translocation of 14C-glyphosate from track-spray applications and correlation to rainfastness in velvetleaf (Abutilon theophrasti). Weed Technol. 14:127132.Google Scholar
Gannon, T. W. and Yelverton, F. H. 2008. Effect of simulated rainfall on tall fescue (Lolium arundinaceum) control with glyphosate. Weed Technol. 22:553557.Google Scholar
Jackson, M. A. and Schisler, D. A. 1992. The composition and attributes of Colletotrichum truncatum spores are altered by the nutritional environment. Appl. Environ. Microbiol. 58:22602265.Google Scholar
Koger, C. H., Dodds, D. M., and Reynolds, D. B. 2007. Effect of adjuvants and urea ammonium nitrate on bispyribac efficacy, absorption, and translocation in barnyardgrass (Echinochloa crus-galli). I. Efficacy, rainfastness, and soil moisture. Weed Sci. 55:399405.CrossRefGoogle Scholar
McDowell, L. L., Willis, G. H., Smith, S., and Southwick, L. M. 1985. Insecticide washoff from cotton plants as a function of time between application and rainfall. Trans. Am. Soc. Agric. Eng. 28:18961900.CrossRefGoogle Scholar
Meyer, L. D. and Harmon, W. C. 1979. Multiple intensity rainfall simulator for erosion research on row sideslopes. Trans. Am. Soc. Agric. Eng. 22:100103.Google Scholar
Mintz, A. S., Heiny, D. K., and Weidemann, G. J. 1992. Factors influencing the biocontrol of tumble pigweed (Amaranthus albus) with Aposphaeria amaranthi . Plant Dis. 76:267279.CrossRefGoogle Scholar
Nemec, S. J. and Adkisson, P. L. 1969. Effects of simulated rain and dew on the toxicity of certain ultra-low volume (ULV) insecticidal formulations. J. Econ. Entomol. 62:7173.Google Scholar
Ntahimpera, N., Madden, L. V., and Wilson, L. L. 1997. Effect of rain distribution alteration on splash dispersal of Colletotrichum acuatum . Phytopathology 87:649655.Google Scholar
Paul, P. A., El-Allaf, S. M., Lipps, P. E., and Madden, L. V. 2004. Rain splash dispersal of Gibberella zeae within wheat canopies in Ohio. Phytopathology 94:13421349.Google Scholar
Sandrin, T. R., TeBeest, D. O., and Weidemann, G. J. 2003. Soybean and sunflower oils increase the infectivity of Colletotrichum gloeosporioides f. sp. aeschynomene to northern jointvetch. Biol. Control 26:244252.Google Scholar
Steel, R.G.D., Torrie, J. H., and Dickey, D. A. 1997. Principles and Procedures of Statistics—A Biometrical Approach. 3rd ed. New York, NY McGraw-Hill.Google Scholar
Stensvand, A. and Elkemo, H. 2005. Use of a rainfall frequency threshold to adjust a degree-day model of ascospore maturity of Venturia inaequalis . Plant Dis. 89:198202.Google Scholar
Troiano, J. and Butterfield, E. J. 1984. Effects of simulated acidic rain on retention of pesticides on leaf surfaces. Phytopathology 74:13771380.Google Scholar
Van Dyke, C. G. and Trigiano, R. N. 1987. Light and scanning electron microscopy of the interaction of the biocontrol fungus Alternaria cassiae with sicklepod (Cassia obtusifolia). Can. J. Plant Pathol. 9:230235.Google Scholar
Vincent, A., Armengol, J., and Garcia-Jimenez, J. 2007. Rainfastness and persistence of fungicides for control of Alternaria brown spot of citrus. Plant Dis. 91:393399.CrossRefGoogle Scholar
Walker, H. L. 1982. A seedling blight of sicklepod caused by Alternaria cassiae . Plant Dis. 66:426428.Google Scholar
Walker, H. L. and Boyette, C. D. 1986. Influence of sequential dew periods on biocontrol of sicklepod (Cassia obtusifolia) by Alternaria cassiae . Plant Dis. 70:962963.Google Scholar
Walker, H. L. and Riley, J. A. 1982. Evaluation of Alternaria cassiae for the biological control of sicklepod (Cassia obtusifolia). Weed Sci. 30:651654.Google Scholar
Weaver, M. A., Lyn, M. E., Boyette, C. D., and Hoagland, R. E. 2007. Bioherbicides for weed control. Pages 93110. In Upadhyaya, M. K. and Blackshaw, R. E., eds. Non-Chemical Weed Management. Oxon, United Kingdom CAB International.Google Scholar
Willis, G. H., McDowell, L. L., Smith, S., and Southwick, L. M. 1992. Foliar washoff of oil-applied malathion and permethrin as a function of time after application. J. Agric. Food Chem. 40:10861089.Google Scholar
Xu, X. M., Murray, R. A., Salazar, J. D., and Hyder, K. 2008. The effects of temperature, humidity, and rainfall on captan decline on apple leaves and fruit in controlled environment conditions. Pest Mgt. Sci. 64:296307.Google Scholar