Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-30T20:21:26.192Z Has data issue: false hasContentIssue false

Chemical Interactions with Bioherbicides to Improve Efficacy

Published online by Cambridge University Press:  12 June 2017

Robert E. Hoagland*
Affiliation:
USDA-ARS, Southern Weed Science Laboratory, P.O. Box 350, Stoneville, MS 38776

Abstract

Bioherbicides can be defined as plant pathogens, phytotoxins derived from pathogens or other microorganisms, augmentatively applied to control weeds. Although many pathogens with bioherbicidal potential have been discovered, most lack sufficient aggressiveness to overcome weed defenses to achieve adequate control. Plants use various physical and biochemical mechanisms to defend against pathogen infectivity, including callose deposition, hydroxyproline-rich glycoprotein accumulation, pathogenesis-related proteins (PR-proteins), phytoalexin production, lignin and phenolic formation, and free radical generation. Some herbicides, plant growth regulators, specific enzyme inhibitors, and other chemicals can alter these defenses. Various pathogens also produce chemical suppressors of plant defenses. Secondary plant metabolism is a major biochemical pathway related to several defense processes. Increased activity of a key enzyme of this pathway, phenylalanine ammonia-lyase (PAL), is often a response to pathogen attack, as demonstrated in two weeds and their associated bioherbicidal pathogens: Alternaria cassiae on sicklepod and A. crassa on jimsonweed. Weakening of physical and biochemical defenses, and lowering of resistance to pathogen attack, may result from reduced production of phenolics, lignin, and phytoalexins caused by herbicides and other chemicals that affect cuticular component biosynthesis and/or key aspects of secondary plant metabolism. Potent PAL inhibitors [aminooxyacetic acid, α-aminooxy-β-phenylpropionic acid, and (l-amino-2-phenylethyl)phosphonic acid] have some regulatory action on secondary plant metabolism and pathogenicity. Various herbicides and other chemicals dramatically affect extractable PAL activity levels and/or substantially alter PAL product production. Some non-pathogenic organisms can alter herbicide efficacy, and some herbicides influence disease development in plants. Research has shown some synergistic interactions of microbes and chemicals with relevance to weed control. Further research on pathogen interactions with agrochemicals (or other chemicals/regulators) could result in increased efficacy of pathogen-herbicide combinations, reduction of herbicide and pathogen levels required for weed control, and expanded pathogen host range.

Type
Symposium
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Altman, J., Neate, S., and Rovira, A. D. 1990. Herbicide-pathogen interactions and mycoherbicides as alternative strategies for weed control. p. 240259 in Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides. Am. Chem. Soc. Symp. Ser. No. 439. ACS Books, Washington, DC.CrossRefGoogle Scholar
2. Amrhein, N. 1979. Biosynthesis of cyanidin in buckwheat hypocotyls. Phytochemistry 18:585589.CrossRefGoogle Scholar
3. Amrhein, N. 1986. Specific inhibitors as probes into the biosynthesis and metabolism of aromatic amino acids. Recent Adv. Phytochem. 20:83117.Google Scholar
4. Amrhein, N., Deus, B., Gehrke, P., and Steinrucken, H. C. 1980. The site of the inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 66:830834.Google ScholarPubMed
5. Amrhein, N., Frank, G., Lemm, G., and Luhmann, H. B. 1983. Inhibition of lignin formation by L-α-aminooxy-β-phenylpropionic acid, an inhibitor of phenylalanine ammonia-lyase. Eur. J. Cell Biol. 29:139144.Google ScholarPubMed
6. Amrhein, N. and Gerhardt, J. 1979. Superinduction of phenylalanine ammonia-lyase in gherkin hypocotyls caused by the inhibitor, L-α-aminooxy-α-phenylpropionic acid. Biochim. Biophys. Acta 583:434442.CrossRefGoogle ScholarPubMed
7. Amrhein, N. and Gödeke, K. H. 1977. α-Aminooxy-β-phenylpropionic acid—a potent inhibitor of phenylalanine ammonia-lyase (PAL) in vitro and in vivo . Plant Sci. Lett. 8:313317.CrossRefGoogle Scholar
8. Amrhein, N., Godeke, K. H., and Gerhardt, J. 1976. The estimation of phenylalanine ammonia-lyase (PAL) activity in intact cells of higher plant tissue. I. Parameters of the assay. Planta 131:3340.CrossRefGoogle ScholarPubMed
9. Amrhein, N. and Hollander, H. 1979. Inhibition of anthocyanin formation in seedlings and flowers by the enantiomers of α-aminooxy-β-phenylpropionic acid and their N-benzyloxycarbonyl derivatives. Planta 144:385389.CrossRefGoogle ScholarPubMed
10. Amrhein, N. and Wenker, D. 1979. Novel inhibitors of ethylene production in higher plants. Plant Cell Physiol. 20:16351642.CrossRefGoogle Scholar
11. Amrhein, N. and Zenk, M. H. 1971. Untersuchungen zur rolle der phenylalanin ammonium-lyase (PAL) bei der regulation der flavonoid-synthese in buckweizen (Fagopyrum esculentum Moench.) Z. Planzenphysiol. 64:145168.Google Scholar
12. Amsellem, Z., Sharon, A., Gressel, J., and Quimby, P. C. Jr. 1990. Complete abolition of high inoculum threshold of two mycoherbicides (Alternaria cassiae and A. crassa) when applied in invert emulsion. Phytopathology 80:925929.CrossRefGoogle Scholar
13. Andebrhan, T., Coutts, R. H. A., Wagih, E. E., and Wood, R. K. S. 1980. Induced resistance and changes in the soluble protein fraction of cucumber leaves locally infected with Colletotrichum lagenarium or TNV. Phytopathol. Z. 98:4752.CrossRefGoogle Scholar
14. Anonymous. 1991. World pesticide sales fall 8% in 1990, says IVA. Agrow World Crop Prot. News 135:18.Google Scholar
15. Anonymous. 1994. Herbicide Handbook, Seventh Edition. Ahrens, W. H., ed. Weed Sci. Soc. Am., Champaign, IL. 352 p.Google Scholar
16. Antoniw, J. F. and White, R. F. 1980. The effect of aspirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. Phytopathol. Z. 98:331341.CrossRefGoogle Scholar
17. Asare-Boamah, N. K. and Fletcher, R. A. 1983. Physiological and cytological effects of BAS 9052 OH on corn (Zea mays) seedlings. Weed Sci. 31:4955.CrossRefGoogle Scholar
18. Ayers, A. R., Ebel, J., Valent, B., and Albersheim, P. 1976. Host-pathogen interactions. X. Fractionation and biological activity of an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae. Plant Physiol. 57:760765.Google ScholarPubMed
19. Bareta-Walker, C. 1984. Trifluralin enhancement of Fusarium dry rot in pinto beans. MS Thesis, Colorado State Univ., Boulder, CO. 55 p.Google Scholar
20. Bayer, E., Krugel, K. H., Hägele, K., Hagenmaier, H., Jessipow, S., Konig, W. A., and Zähner, H. 1972. Phosphinothricin und phosphinothricyl-alanyl-alanin. Helv. Chim. Acta 55:224239.CrossRefGoogle Scholar
21. Bayles, C. J., Ghemawat, M. S., and Aist, A. R. 1990. Inhibition by 2-deoxyglucose of callose formation, papillae deposition and resistance to powdery mildew in a ml-o barley mutant. Physiol. Mol. Plant Pathol. 36:6372.CrossRefGoogle Scholar
22. Becerril, J. M., Duke, S. O., and Lydon, J. 1989. Glyphosate effects on shikimate pathway products in leaves and flowers of velvetleaf. Phytochemistry 28:695699.CrossRefGoogle Scholar
23. Bellés, J. M., Carbinol, J., and Conejero, V., 1991. Polyamines in plants infected by citrus exocortis viroid or treated with silver ions and ethephon. Plant Physiol. 96:10531059.CrossRefGoogle ScholarPubMed
24. Bera, S. and Purkayastha, R. P. 1994. Differential response of pathogensis-related proteins to phytoalexin elicitors and its impact on sheath blight disease of rice. Ind. J. Exp. Biol. 32:902905.Google Scholar
25. Berlin, J. and Witte, L. 1980. Effects of glyphosate on shikimic acid accumulation in tobacco cell cultures with low and high yields of cinnamoyl putrescines. Z. Naturforsch. 36 Sect./Teil C210–214.CrossRefGoogle Scholar
26. Bernards, M. A. and Ellis, B. E. 1991. Phenylalanine ammonia-lyase from tomato cell cultures inoculated with Verticlllium albo-atrum . Plant Physiol. 97:14941500.CrossRefGoogle ScholarPubMed
27. Bhattacharyya, M. K. and Ward, E. W. B. 1987. Temperature-induced susceptibility of soybeans to Phytophthora megasperma f. sp. glycinea: phenylalanine ammonia-lyase and glyceollin in the host; growth and glyceollin I sensitivity of the pathogen. Physiol. Mol. Plant Pathol. 31:407419.Google Scholar
28. Bhattacharyya, M. K. and Ward, E. W. B. 1988. Phenylalanine ammonia-lyase activity in soybean hypocotyls and leaves following infection with Phytophthora megasperma f. sp. glycinea. Can. J. Bot. 66:1823.CrossRefGoogle Scholar
29. Böger, P. and Sandmann, G., eds. 1989. Target Sites of Herbicide Action. CRC Press, Boca Raton, FL. 295 p.Google Scholar
30. Bol, J. F., Linthorst, H. J. M., and Cornelissen, B. J. C. 1990. Plant pathogenesis-relaled proteins induced by virus infection. Annu. Rev. Phytopathol. 28:113138.CrossRefGoogle Scholar
31. Bowles, D. J. 1990. Defense-related proteins in higher plants. Annu. Rev. Biochem. 59:873907.CrossRefGoogle ScholarPubMed
32. Bowling, C. C. and Hudgins, H. R. 1966. The effect of insecticides on the selectivity of propanil on rice. Weeds 14:9495.CrossRefGoogle Scholar
33. Boyette, C. D. 1986. Evaluation of Alternaria crassa for biological control of jimsonweed: Host range and virulence. Plant Sci. 45:223228.CrossRefGoogle Scholar
34. Boyette, C. D., Quimby, P. C. Jr., Connick, W. J. Jr., Daigle, D. J., and Fulgham, F. E. 1991. Progress in the production, formulation, and application of mycoherbicides. p. 209222 in TeBeest, D. O., ed. Microbial Control of Weeds. Chapman and Hall, New York.CrossRefGoogle Scholar
35. Brammall, R. A. and Higgins, V. J. 1988. The effect of glyphosate on resistance of tomato to Fusarium crown and root rot disease and on the formation of host structural defensive barriers. Can. J. Bot. 66:15471555.CrossRefGoogle Scholar
36. Bruce, R. J. and West, C. A. 1982. Elicitation of casbene synthetase activity in castor bean. The role of pectic fragments of the plant cell wall in elicitation by a fungal endopolygalacturonase. Plant Physiol. 69:11811188.Google ScholarPubMed
37. Burge, M. N. 1993. Microbes and microbial phytotoxins as herbicides. p. 8296 in Avery, A. L., ed. Drugs From Natural Products: Pharmaceuticals and Agrochemicals. Ellis Horwood Series in Pharmaceutical Technology. Ellis Horwood, New York.Google Scholar
38. Cahill, D. M. and McComb, J. A. 1992. A comparison of changes in phenylalanine ammonia-lyase activity, lignin and phenolic synthesis in the roots of Eucalyptus calophylla (field resistant) and E. marginata (susceptible) when infected with Phytophthora cinnamomi . Physiol. Mol. Plant Pathol. 40:315332.CrossRefGoogle Scholar
39. Callaghan, T., Ross, R., Weinberger-Ohana, P., and Benziman, M. 1988. β-Glucoside activators of mung bean UDP-glucose: β-glucan synthase. II. Comparison of effects of an endogenous β-linked gluco-lipid with synthetic n-alkyl-D-monoglucopyranosides. Plant Physiol. 86:11041107.Google ScholarPubMed
40. Camm, E. L. and Towers, G. H. N. 1973. Phenylalanine ammonia-lyase. Phytochemistry 12:961973.CrossRefGoogle Scholar
41. Carr, J. P. and Klessing, O. F. 1990. The pathogenesis-related proteins of plants. p. 65109 in Setlow, J. K., ed., Genetic Engineering, Principles and Methods, Vo. 11. Plenum Press, New York.Google Scholar
42. Carver, T. L. W., Zeyen, R. J. 1993. Effects of PAL and CAD inhibition on powdery mildew resistance phenomena in cereals. p. 324327 in Fritig, B. and Legrand, M., eds., Mechanisms of Plant Defense Responses. Kluwer Acad. Publishers, Boston, MA.CrossRefGoogle Scholar
43. Carver, T.L.W., Zeyen, R. J., Robbins, M. P., and Dearne, G. A. 1992. Effects of the PAL inhibitor AOPP on oat, barley, and wheat cell responses to appropriate and inappropriate formae speciales of Erysiphe graminis DC. Physiol. Mol. Plant Pathol. 41:397409.CrossRefGoogle Scholar
44. Cassab, G. I. and Varner, J. E. 1988. Cell wall proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:321353.CrossRefGoogle Scholar
45. Caulder, J. D. and Stowell, L. 1988. U.S. Patent #4,766,873. 18 p.Google Scholar
46. Chappell, J. and Hahlbrock, K. 1984. Transcription of plant defense genes in response to UV light or fungal elicitor. Nature 311:7678.CrossRefGoogle Scholar
47. Chapple, C.C.S., Walker, M. A., and Ellis, B. E. 1986. Plant tyrosine decarboxylase can be strongly inhibited by L-α-aminooxy-β-phenyl-propionate. Planta 167:101105.CrossRefGoogle Scholar
48. Charudattan, R. 1985. The use of natural and genetically altered strains of pathogens for weed control. p. 347372 in Hoy, M. A. and Herzog, D. C., eds. Biological Control in Agricultural IPM Systems. Academic Press, New York.CrossRefGoogle Scholar
49. Charudattan, R. 1986. Integrated control of waterhyacinth (Eichornia crassipes) with a pathogen, insects, and herbicides. Weed Sci. 34(Suppl. 1): 2630.CrossRefGoogle Scholar
50. Charudattan, R. 1990. Pathogens with potential for weed control. p. 132154 in Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides. Am. Chem. Soc. Symp. Ser. No. 439. ACS Books, Washington, DC.CrossRefGoogle Scholar
51. Charudattan, R. and Walker, H. L., eds. 1982. Biological Control of Weeds with Plant Pathogens. Wiley Press, New York. 293 p.Google Scholar
52. Christ, U. and Mösinger, E. 1989. Pathogenesis-related proteins of tomato: 1. Induction by Phytophthora infestans and other biotic and abiotic inducers and correlations with resistance. Physiol. Mol. Plant Pathol. 35:5365.Google Scholar
53. Christy, A. L., Herbst, K. A., Kostka, S. J., Mullen, J. P., and Carlson, P. S. 1993. Synergizing weed biocontrol agents with chemical herbicides. p. 87100 in Duke, S. O., Menn, J. J., and Plimmer, J. R., eds. Pest Control with Enhanced Environmental Safety. Am. Chem. Soc. Symp. Ser. No. 524. ACS Books, Washington, DC.CrossRefGoogle Scholar
54. Cohen, R., Riov, J., Lisker, N., and Katan, J. 1986. Involvement of ethylene in herbicide-induced resistance to Fusarium oxysporum f. sp. melonis. Phytopathology 76:12811285.CrossRefGoogle Scholar
55. Cohen, Y., Eyal, H., Hanania, J., and Malik, Z. 1989. Ultrastructure of Pseudoperonaspora cubensis in muskmelon genotypes susceptible and resistant to downy mildew. Physiol. Molec. Plant Pathol. 34:2740.CrossRefGoogle Scholar
56. Conn, K. L. and Tenari, J. P. 1989. Interactions of Alternaria brassicae conidia with leaf epicuticular wax of canola. Mycol. Res. 93:240242.CrossRefGoogle Scholar
57. Cook, R. J. and Baker, K. F. 1983. The Nature and Practice of Biological Control of Plant Pathogens. American Phytopathology Society, St. Paul, MN. 539 p.Google Scholar
58. Cooper, G., Delmer, D., and Nitsche, C. 1987. Photoaffinity analog of herbicide inhibiting cellulose biosynthesis: Synthesis of [-3H]-2,6-dichlorophenylazide. J. Labelled Comps. Radiopharmaceuticals 24:759761.CrossRefGoogle Scholar
59. Cornelissen, B.J.C., Horowitz, J., van Kan, J.A.L., Goldberg, R. B., and Bol, J. F. 1987. Structure of tobacco genes encoding pathogenesis–related proteins from the PR1 group. Nucleic Acids Res. 15:67996811.CrossRefGoogle ScholarPubMed
60. Coutts, R.H.A. 1978. Alterations in the soluble protein patterns of tobacco and cowpea leaves following inoculation with tobacco necrosis virus. Plant Sci. Lett. 12:189197.CrossRefGoogle Scholar
61. Craker, L. E. and Wetherbee, P. J. 1973. Ethylene, carbon dioxide, and anthocyanin synthesis. Plant Physiol. 52:177179.CrossRefGoogle ScholarPubMed
62. Cramer, C. L., Ryder, T. B., Bell, J. N., and Lamb, C. J. 1985. Rapid switching of plant gene expression induced by fungal elicitor. Science 227:12401243.CrossRefGoogle Scholar
63. Creasy, L. L. 1968. The increase in phenylalanine ammonia-lyase activity in strawberry leaf discs and its correlation with flavonoid synthesis. Phytochemisty 7:441446.CrossRefGoogle Scholar
64. Croft, K. P. C., Voisey, C. R., and Slusarenko, A. J. 1990. Mechanism of hypersensitive cell collapse: Correlation of increased lipoxygenase activity with membrane damage in leaves of Phaseolus vulgaris (L.) inoculated with an avirulent race of Pseudomonas syringae pv. phaseolicola . Physiol. Mol. Plant Pathol. 36:4962.CrossRefGoogle Scholar
65. Croteau, R. and Johnson, A. 1984. Biosynthesis of terpenoids in glandular trichomes. p. 133186 in Rodriguez, E., Healey, P., and Mehta, I., eds., Biology and Chemistry of Plant Trichomes. Plenum Press, New York.CrossRefGoogle Scholar
66. Cruickshank, I.A.M. and Perrin, D. R. 1968. The isolation and partial characterization of monilicolin A, a polypeptide with phaseollin-inducing activity from Monilinia fructicola . Life Sci. 7:449458.CrossRefGoogle Scholar
67. Cunha da, A. 1987. The estimation of L-phenylalanine ammonia-lyase shows phenylpropanoid biosynthesis to be regulated by L-phenylalanine supply and availability. Phytochemistry 26:27232727.CrossRefGoogle Scholar
68. Daigle, D. J. and Connick, W. J. Jr. 1990. Formulation and application technology for microbial weed control. p. 288304 in Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides. Am. Chem. Soc. Symp. Ser. No. 439. ACS Books, Washington, DC.CrossRefGoogle Scholar
69. Dalkin, K., Jorrín, J., and Dixon, R. A. 1990. Stress responses in alfalfa (Medicago sativa L.). VII. Induction of defense related mRNAs in elicitor-treated cell suspension cultures. Physiol. Mol. Plant Pathol. 37:293307.Google Scholar
70. Davies, M. E. 1972. Effects of auxin on polyphenol accumulation and the development of phenylalanine ammonia-lyase activity in dark-grown suspension cultures of Paul's Scarlet Rose. Planta 104:6677.CrossRefGoogle Scholar
71. Delmer, D. 1987. Cellulose biosynthesis. Annu. Rev. Plant Physiol. 38:259290.CrossRefGoogle Scholar
72. Delp, G., Saindrenan, P., Palva, T. K., and Palva, E. T. 1993. Biochemical and molecular characterization of differentially induced 1,3-β-glucanases in Arabidopsis thaliana . p. 297303 in Fritig, B. and Legrand, M., eds. Mechanisms of Plant Defense Responses. Kluwer Acad. Publishers, Boston, MA.CrossRefGoogle Scholar
73. Deshpande, B. S., Ambedkar, S. S., and Shewale, J. G. 1988. Biologically active secondary metabolites from Streptomyces . Enzyme Microb. Technol. 10:455473.CrossRefGoogle Scholar
74. Devi, M. S., Rao, J.V.S., and Das, V.S.R. 1976. Herbicide induced changes in the levels of epicuticular waxes and cuticle. Ind. J. Plant Physiol. 19:249253.Google Scholar
75. Dewey, O. R., Hartley, G. S., and MacLachin, J.N.G. 1962. External leaf waxes and their modification by root-treatment of plants with trichloroacetate. Proc. Royal Soc. Ser. B. Biol. Sci. 155:532550.Google Scholar
76. Dieterman, L. J., Lin, C. Y., Rohrbaugh, L. M., and Wender, S. H. 1964. Accumulation of ayapin and scopolin in sunflower plants treated with 2,4-dichlorophenoxyacetic acid. Arch. Biochem. Biophys. 106:275279.CrossRefGoogle Scholar
77. Doke, N. 1975. Prevention of the hypersensitive reaction of potato cells to infection with an incompatible race of Phytophthora infestans by constituents of the zoospores. Physiol. Plant Pathol. 7:17.CrossRefGoogle Scholar
78. Doke, N. 1983. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol. Plant Pathol. 23:345357.CrossRefGoogle Scholar
79. Doke, N., Miura, Y., Sanchez, L., and Kawakita, K. 1994. Involvement of superoxide in signal transduction: Responses to attack by pathogens, physical and chemical shocks, and UV irradiation. p. 177197 in Foyer, C. H. and Mullineaux, P. M., eds. Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. CRC Press, Boca Raton, FL.Google Scholar
80. Duke, S. O. 1985. Biosynthesis of phenolic compounds: Chemical manipulation in higher plants. p. 113131 in Thompson, A. C., ed. The Chemistry of Allelopathy. Am. Chem. Soc. Symp. Ser. No. 268. ACS Books, Washington, DC.CrossRefGoogle Scholar
81. Duke, S. O. 1986. Naturally occurring chemical compounds as herbicides. Rev. Weed Sci. 2:1544.Google Scholar
82. Duke, S. O. and Abbas, H. K. 1995. Natural products with potential use as herbicides, p. 348362 in Inderjit, , Dakshini, K.M.M., and Einhellig, F. A., eds. Allelopathy-Organisms, Processes, and Applications. Am. Chem. Soc. Symp. Ser. 582. ACS Books, Washington, DC.Google Scholar
83. Duke, S. O. and Hoagland, R. E. 1978. Effects of glyphosate on metabolism of phenolic compounds. I. Induction of phenylalanine ammonia-lyase activity in dark-grown maize roots. Plant Sci. Lett. 11:185190.CrossRefGoogle Scholar
84. Duke, S. O. and Hoagland, R. E. 1985. Effects of glyphosate on metabolism of phenolic compounds. p. 7591 in Grossbard, E. and Atkinson, D., eds. The Herbicide Glyphosate. Butterworths, London.Google Scholar
85. Duke, S. O., Menn, J. J., and Plimmer, J. R. 1993. Challenges of pest control with enhanced toxicological and environmental safety: An overview. p. 113 in Duke, S. O., Menn, J. J., and Plimmer, J. R., eds. Pest Control with Enhanced Environmental Safety. Am. Chem. Soc. Symp. Ser. No. 524. ACS Books, Washington, DC.CrossRefGoogle Scholar
86. Duncan, D. R. and Paxton, J. D. 1981. Trifluralin enhancement of Phytophthora root rot of soybean. Plant Dis. 65:435436.CrossRefGoogle Scholar
87. Ebert, E. and Ramsteiner, K. 1984. Influence of metolachlor and the metolachlor protectant CGA 43089 on the biosynthesis of epicuticular waxes on the primary leaves of Sorghum bicolor Moench. Weed Res. 24:383389.CrossRefGoogle Scholar
88. Ellis, B. E., Remmen, S., and Goeree, G. 1979. Interactions between parallel pathways during biosynthesis of rosmarinic acid in cell suspension cultures of Coleus blumei . Planta 147:163167.CrossRefGoogle ScholarPubMed
89. Engelsma, G. 1973. Induction of phenylalanine ammonia-lyase by dichlobenil in gherkin seedlings. Acta Bot. Neerl. 22:4954.CrossRefGoogle Scholar
90. Esquerré-Tugayé, M. T. and Lamport, D. T. 1979. Cell surfaces in plant-microorganism interactions. I. A structural investigation of cell wall hydroxyproline-rich glycoprotein which accumulates in fungus-infected plants. Plant Physiol. 64:314319.CrossRefGoogle Scholar
91. Farkas, G. L. and Király, Z. 1962. Role of phenolic compounds in the physiology of plant disease and disease resistance. Phytopathol. Z. 44:105150.CrossRefGoogle Scholar
92. Fenn, M. E. and Coffey, M. D. 1989. Quantification of phosphonate and ethyl phosphonate in tobacco and tomato tissues and significance for the mode of action of two phosphonate fungicides. Phytopathology 79:7682.CrossRefGoogle Scholar
93. Fischer, H.-P. and Bellus, D. 1983. Phytotoxicants from microorganisms and related compounds. Pestic. Sci. 14:334346.CrossRefGoogle Scholar
94. Fredrickson, K. and Larsson, C. 1989. Activation of 1,3-β-glucan synthase by Ca+2 spermine and cellobiose. Localization of activator sites using inside-out plasma membrane vesicles. Physiol. Plant. 77:96201.Google Scholar
95. Friend, J. 1981. Plant phenolics, lignification, and plant disease. Prog. Phytochem. 7:197261.Google Scholar
96. Fristensky, B., Horovitz, D., and Hadwiger, L. A. 1988. DNA sequences for pea resistance response genes. Plant Mol. Biol. 11:713715.CrossRefGoogle Scholar
97. Fritzmeier, K.-H., Cretin, C., Kombrink, E., Rohwer, F., Taylor, J., Scheel, D., and Hahlbrock, K. 1987. Transient induction of phenylalanine ammonia-lyase and 4-coumarate:CoA ligase mRNAs in potato leaves infected with virulent or avirulent races of Phytophthora infestans . Plant Physiol. 85:3441.CrossRefGoogle Scholar
98. Gentner, W. A. 1966. The influence of EPTC on external foliage wax deposition. Weeds 14:2731.CrossRefGoogle Scholar
99. Gianinazzi, S. 1982. Antiviral agents and inducers of virus resistance: Analogies with interferon. p. 275298 in Wood, R.K.S., ed., Active Defense Mechanisms in Plants. NATO Advanced Study Institutes Series, Vol. 37. Plenum Press, New York.CrossRefGoogle Scholar
100. Goodman, R. N., Király, Z., and Wood, K. R. 1986. Secondary metabolites. p. 211244 in The Biochemistry and Physiology of Plant Disease. Univ. of Missouri Press, Columbia, MO.Google Scholar
101. Greaves, M. P. and Sargent, J. A. 1986. Herbicide-induced microbial invasion of plant roots. Weed Sci. 34(Suppl. 1): 5053.CrossRefGoogle Scholar
102. Green, N., Hadwiger, L. A., and Graham, S. O. 1975. Phenylalanine ammonia-lyase, tyrosine ammonia-lyase, and lignin in wheal inoculated with Erysiphe graminis f. sp. tritici. Phytopathology 65:10711074.CrossRefGoogle Scholar
103. Gressel, J. 1990. Synergizing herbicides. Rev. Weed Sci. 5:4982.Google Scholar
104. Gressel, J. 1993. Synergizing pesticides to reduce use rates. p. 4861 in Duke, S. O., Menn, J. J., and Plimmer, J. R., eds. Pest Control with Enhanced Environmental Safety. Am. Chem. Soc. Symp. Ser. No. 524. ACS Books, Washington, DC.CrossRefGoogle Scholar
105. Grisebach, H., Börner, H., and Moesta, P. 1982. Induction of phytoalexin synthesis in soybean and its significance for the resistance against Phytophthora megasperma f. sp. glycinea. Ber. Deutsch. Bot. Ges. 95:619642.Google Scholar
106. Grumbach, K. H. and Bach, T. J. 1979. The effect of PS II herbicides amitrol and San 6706 on the activity of 3-hydroxy-3-methylglutaryl-coenzyme-A-reductase and the incorporation of [2-14C] acetate and [2-3]mevalonate into chloroplast pigments of radish seedlings. Z. Naturforsch 34C:941943.CrossRefGoogle Scholar
107. Hadwiger, L. A. and Wagner, W. 1983. Electrophoretic patterns of pea and Fusarium solani proteins synthesized in vitro or in vivo which characterize the compatible and incompatible interactions. Physiol. Plant Pathol. 23:153162.CrossRefGoogle Scholar
108. Haga, M., Haruyama, T., Kano, H., Sekizawa, Y., Urushizaki, S., and Matsumoto, K. 1988. Dependence on ethylene of the induction of phenylalanine ammonia-lyase activity in rice leaf infected with blast fungus. Agric. Biol. Chem. 52:943950.Google Scholar
109. Hahlbrock, K. and Scheel, D. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. Mol. Biol. 40:347369.CrossRefGoogle Scholar
110. Hahn, M. G., Darvill, A. B., and Albersheim, P. 1981. Host-pathogen interactions. XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans. Plant Physiol. 68:11611169.Google ScholarPubMed
111. Halliwell, B. 1978. Biochemical mechanisms accounting for the toxic action of oxygen on living organisms: The key role of superoxide dismutase. Cell Biol. Int. Rep. 2:113128.CrossRefGoogle ScholarPubMed
112. Hammerschmidt, R. 1984. Rapid deposition of lignin in potato tuber tissue as a response to fungi non-pathogenic on potato. Physiol. Plant Pathol. 24:3342.CrossRefGoogle Scholar
113. Hargreaves, J. A. and Bailey, J. A. 1978. Phytoalexin production by hypocotyls of Phaseolus vulgaris in response to constitutive metabolites released by damaged bean cells. Physiol. Plant Pathol. 13:89100.CrossRefGoogle Scholar
114. Hatzios, K. K. and Hoagland, R. E., eds. 1989. Crop Safeners for Herbicides: Development, Uses, and Mechanisms of Action. Academic Press, New York. 400 p.Google Scholar
115. Hatzios, K. K. and Penner, D. 1985. Interactions of herbicides with other agrochemicals in higher plants. Rev. Weed Sci. 1:163.Google Scholar
116. Heath, M. C. 1981. A generalized concept of host-parasite specificity. Phytopathology 71:11211123.CrossRefGoogle Scholar
117. Hoagland, R. E. 1980. Effects of glyphosate on metabolism of phenolic compounds: VI. Effects of glyphosine and glyphosate metabolites on phenylalanine ammonia-lyase activity, growth and protein, chlorophyll and anthocyanin levels in soybean (Glycine max) seedlings. Weed Sci. 28:393400.Google Scholar
118. Hoagland, R. E. 1984. Dimethipin (2,3-dihydro-3,6-dimethyl-1,4,dimethyl-1,4-dithiin 1,1,4,4-tetraoxide) effects on soybean seedling growth and metabolism. Plant Cell Physiol. 25:397405.Google Scholar
119. Hoagland, R. E. 1985. O-Benzylhydroxylamine: An inhibitor of phenylpropanoid metabolism in plants. Plant Cell Physiol. 26:13531359.Google Scholar
120. Hoagland, R. E. 1989. Biochemical interactions of atrazine and glyphosate in soybean (Glycine max) seedlings. Weed Sci. 37:491497.CrossRefGoogle Scholar
121. Hoagland, R. E. 1989. Acifluorfen action on growth and phenolic metabolism in soybean (Glycine max) seedlings. Weed Sci. 37:743747.CrossRefGoogle Scholar
122. Hoagland, R. E., ed. 1990. Microbes and Microbial Products as Herbicides. Am. Chem. Symp. Ser. No. 439. ACS Books, Washington, DC. 341 p.CrossRefGoogle Scholar
123. Hoagland, R. E. 1990. Microbes and microbial products as herbicides: An overview. p. 252 in Hoagland, R. E., ed., Microbes and Microbial Products as Herbicides. Am. Chem. Soc. Symp. Ser. No. 439. ACS Books, Washington, DC.CrossRefGoogle Scholar
124. Hoagland, R. E. 1990. Biochemical responses of plants to pathogens. p. 87113 in Hoagland, R. E., ed., Microbes and Microbial Products as Herbicides. Am. Chem. Soc. Symp. Ser. No. 439. ACS Books, Washington, DC.CrossRefGoogle Scholar
125. Hoagland, R. E. 1990. Interaction of indoleacetic acid and glyphosate on phenolic metabolism in soybeans. Pestic. Biochem. Physiol. 36:6875.CrossRefGoogle Scholar
126. Hoagland, R. E. 1990. Alternaria cassiae alters phenylpropanoid metabolism in sicklepod (Cassia obtusifolia). J. Phytopathol. 130:177187.CrossRefGoogle Scholar
127. Hoagland, R. E. and Boyette, C. D. 1994. Pathogenic interactions of Alternaria crassa and phenolic metabolism in jimsonweed (Datura stramonium L.) varieties. Weed Sci. 42:44 49.CrossRefGoogle Scholar
128. Hoagland, R. E. and Duke, S. O. 1981. Effects of herbicides on extractable phenylalanine ammonia-lyase activity in light- and dark-grown Glycine max (L.) Merr. seedlings. Weed Sci. 29:433439.CrossRefGoogle Scholar
129. Hoagland, R. E. and Duke, S. O. 1982. Effects of glyphosate on metabolism of phenolic compounds. VIII. Comparison of the effects of aminooxyacetate and glyphosate. Plant Cell Physiol. 23:10811088.Google Scholar
130. Hoagland, R. E. and Duke, S. O. 1983. Relationship between phenylalanine ammonia-lyase activity and physiological responses of soybean (Glycine max) seedlings to herbicides. Weed Sci. 31:845852.CrossRefGoogle Scholar
131. Hodgson, R. H. and Snyder, R. H. 1989. Thidiazuron and Colletotrichum coccodes effects on ethylene production by velvetleaf (Abutilon theophrasti) and prickly sida (Sida spinosa). Weed Sci. 37:484489.CrossRefGoogle Scholar
132. Hodgson, R. H., Wymore, L. A., Watson, A. K., Snyder, R. H., and Coullette, A. 1988. Efficacy of Colletotrichum coccodes and thidiazuron for velvetleaf (Abutilon theophrasti) control in soybean (Glycine max). Weed Technol. 2:473480.CrossRefGoogle Scholar
133. Hoescht, AG. 1977. DOS 2 717 440.Google Scholar
134. Holliday, M. J. and Keen, N. T. 1982. The role of phytoalexins in the resistance of soybean leaves to bacteria: Effect of glyphosate on glyceollin accumulation. Phytopathology 72:14701474.CrossRefGoogle Scholar
135. Hooft van Huijsduijnen, R.A.M., Kauffmann, S., Brederode, F.T.H., Cornelisson, B.J.C., Legrand, M., Fritig, B., and Bol, J. F. 1987. Homology between chitinases that are induced by TMV infection of tobacco. Plant Mol. Biol. 9:411420.CrossRefGoogle ScholarPubMed
136. Hyashi, T., Read, S. M., Bussell, J., Thelen, M. T., Lin, F.-C., Brown, R. M. Jr., and Delmer, D. P. 1987. UDP-glucose:(1Å3)-β-glucan synthases from mung bean and cotton. Differential effects of Ca+2 and Mg+2 on enzyme properties and on macromolecular structure of the glucan product. Plant Physiol. 83:10541062.CrossRefGoogle Scholar
137. Ishikura, N., Iwata, M., and Mitsui, S. 1983. The influence of some inhibitors on the formation of caffeic acid in cultivars of Perilla cell suspensions. Bot. Mag. Tokyo 96:111120.CrossRefGoogle Scholar
138. Janas, K. M., Filipiak, A., Kowalik, J., Mastalerz, P., and Knypl, J. S. 1985. 1-Amino-2-phenylethylphosphonic acid: an inhibitor of L-phenylalanine ammonia-lyase in vitro . Acta Biochim. Polonica 32:131143.Google ScholarPubMed
139. Jangaard, N. O. 1974. The effect of herbicides, plant growth regulators and other compounds on phenylalanine ammonia-lyase activity. Phytochemistry 13:17691775.CrossRefGoogle Scholar
140. Juniper, B. E. 1957. The effect of pre-emergent treatment of peas with trichloroacetic acid on the submicroscopic structure of the leaf surface. New Phytol. 58:15.CrossRefGoogle Scholar
141. Katan, J. and Eshel, Y. 1973. Interactions between herbicides and plant pathogens. Residue Rev. 45:145177.CrossRefGoogle Scholar
142. Kauffmann, S., Legrand, M., Geoffroy, P., and Fritig, B. 1987. Biological function of pathogensis-related proteins: Four PR proteins of tobacco have 1,3-glucanase activity. EMBO J. 6:32093212.CrossRefGoogle Scholar
143. Kauss, H. 1990. Role of the plasma membrane in host/pathogen interactions. p. 320350 in Larsson, C. and Meller, I. M., eds. The Plant Plasma Membrane: Structure, Function, and Molecular Biology. Springer-Verlag, Berlin.Google Scholar
144. Kauss, H., Waldmann, T., Jeblick, W., and Takemoto, T. Y. 1991. The phytotoxin syringomycin elicits Ca2+-dependant callose synthesis in suspension-cultured cells of Catharanthus roseus . Physiol. Plant. 81:134138.CrossRefGoogle Scholar
145. Ke, D. and Saltveit, M. E. Jr. 1988. Plant hormone interaction and phenolic metabolism in the regulation of Russet spotting in iceberg lettuce. Plant Physiol. 88:11361140.CrossRefGoogle ScholarPubMed
146. Keen, N. T., Holliday, M. J., and Yashikawa, M. 1982. Effects of glyphosate on glyceollin production and the expression of resistance to Phytophthora megasperma f. sp. glycinea in soybean. Phytopathology 72:14671470.CrossRefGoogle Scholar
147. Keppler, L. D. and Baker, C. J. 1989. O2 inhibited lipid peroxidation in a bacteria-induced hypersensitive reaction in tobacco cell suspensions. Phytopathology 79:555562.CrossRefGoogle Scholar
148. Keppler, L. D., Baker, C. J., and Atkinson, M. M. 1989. Active oxygen production during a bacteria-induced hypersensitive reaction in tobacco suspension cells. Phytopathology 79:974978.CrossRefGoogle Scholar
149. Kessmann, H. and Barz, W. 1986. Elicitation and suppression of phytoalexin and isoflavone accumulation in cotyledons from Cicer arietinum L. as caused by wounding and by polymeric components from the fungus Ascochyta rabiei. J. Phytopathol. 117:312335.Google Scholar
150. Klerk, R. A., Smith, R. J. Jr., and TeBeest, D. O. 1985. Integration of a microbial herbicide into weed pest control programs in rice (Oryza sativa). Weed Sci. 33:9599.CrossRefGoogle Scholar
151. Knypl, J. S. and Janas, K. M. 1986. Physiological activity of 1-amino-2-phenylethylphosphonic acid, a substrate analog of phenylalanine. Biol. Plant. 28:9194.CrossRefGoogle Scholar
152. Kodama, M., Kajiware, K., Otani, H., and Kohmoto, K. 1989. A host-recognition factor from Botrytis affecting scallion. p. 3344 in Kohmoto, K. and Durbin, R. D., eds. Host-Specific Toxins, Recognition and Specificity Factors in Plant Disease. Tottori Univ. Press, Tottori, Japan.Google Scholar
153. Kolattukudy, P. E. 1965. Biosynthesis of wax in Brassica oleracea . Biochemistry 4:18441855.CrossRefGoogle Scholar
154. Kolattukudy, P. E. 1967. Biosynthesis of paraffins in Brassica oleracae: Fatty acid elongation-decarboxylation as a plausible pathway. Phytochemistry 6:963975.CrossRefGoogle Scholar
155. Kombrink, E., Schroder, M., and Hahlbrock, K. 1988. Several “pathogenesis-related“ proteins in potato are 1,3-glucanase and chitinase. Proc. Natl. Acad. Sci. U.S.A. 85:782786.CrossRefGoogle Scholar
156. Kömives, T. and Casida, J. E. 1982. Diphenylether herbicides: Effects of acifluorfen on phenylpropanoid biosynthesis and phenylalanine ammonia-lyase activity in spinach. Pestic. Biochem. Physiol. 18:191196.CrossRefGoogle Scholar
157. Kömives, T. and Casida, J. E. 1983. Acifluorfen increases the leaf content of phytoalexins and stress metabolites in several crops. J. Agric. Food Chem. 31:751755.CrossRefGoogle Scholar
158. Kondo, Y., Shomura, T., Ogawa, Y., Tsuruoka, T., Watanabe, H., Totukawa, K., Suzuki, T., Moriyama, C., Yoshida, J., Inouye, S., and Niida, T. 1973. Studies on a new antibiotic, SF-1293. I. Isolation and physico-chemical and biological characterization of SF-1293 substances. Sci. Rep. Meiji Seika Kaisha 13:3441.Google Scholar
159. Kovats, K., Binder, A., and Hohl, H. R. 1991. Cytology of induced systemic resistance of cucumber to Colletotrichum lagenarium , Planta 183:484490.Google ScholarPubMed
160. Kovats, K., Binder, A., and Hohl, H. R. 1991. Cytology of induced systemic resistance of tomato to Phytophthora infestans . Planta 183:491496.Google ScholarPubMed
161. Kuhn, D. N., Chappell, J., Boudet, A., and Hahlbrock, K. 1984. Induction of phenylalanine ammonia-lyase and 4-coumarate:CoA ligase mRNAs in cultured plant cells by UV light or fungal elicitor. Proc. Natl. Acad. Sci. U.S.A. 81:11021106.CrossRefGoogle ScholarPubMed
162. Kurosaki, F. and Nishi, A. 1984. Elicitation of phytoalexin production in cultured carrot cells. Physiol. Plant Pathol. 24:169176.CrossRefGoogle Scholar
163. Laber, B., Kiltz, H. H., and Amrhein, N. 1986. Inhibition of phenylalanine ammonia-lyase in vitro and in vivo by (1-amino-2-phenylethyl)phosphonic acid, the phosphonic analogue of phenylalanine. Z. Naturforsch. 41 Sect./Teil C:49–55.Google Scholar
164. Leach, J. E., Cantrell, M. A., and Sequeira, L. 1982. Hydroxyproline-rich bacterial agglutinin from potato. Extraction, purification, and characterization. Plant Physiol. 70:13531358.Google ScholarPubMed
165. Legrand, M., Kauffmann, S., Geoffroy, P., and Fritig, B. 1987. Biological function of pathogensis-related proteins: Four tobacco pathogensis-related proteins are chitinases. Proc. Natl. Acad. Sci. U.S.A. 84:67506754.CrossRefGoogle Scholar
166. Lévesque, C. A. and Rahe, J. E. 1992. Herbicide interactions with fungal root pathogens, with special references to glyphsosate. Annu. Rev. Phytopathol. 30:579602.CrossRefGoogle Scholar
167. Lucas, J., Camacho-Henriquez, A., Lottspeich, F., Henschen, A., and Sanger, H. L. 1985. Amino acid sequence of the pathogenesis-related leaf protein P14 from viroid-infected tomato reveals a new type of structurally unfamiliar protein. EMBO J. 4:27452749.CrossRefGoogle ScholarPubMed
168. Lydon, J. and Duke, S. O. 1988. Glyphosate induction of elevated levels of hydroxybenzoic acids in higher plants. J. Agric. Food Chem. 36:813818.CrossRefGoogle Scholar
169. Lydon, J. and Duke, S. O. 1989. Pesticide effects on secondary metabolism of higher plants. Pestic. Sci. 25:361373.CrossRefGoogle Scholar
170. Lydon, J. and Duke, S. O. 1993. The role of pesticides on host allelopathy and their effects on allelopathic compounds. p. 3756 in Altman, J., ed. Pesticide Interactions in Crop Production, Beneficial and Deleterious Effects. CRC Press, Boca Raton, FL.Google Scholar
171. Lynch, J. M. and Ebben, M. H. 1986. The use of micro-organisms to control plant disease. J. Appl. Bact. Symp. Suppl. 15:115S126S.Google Scholar
172. Mann, J. D. and Pu, M. 1968. Inhibition of lipid synthesis by certain herbicides. Weed Sci. 16:197198.CrossRefGoogle Scholar
173. Massala, R., Legrand, M., and Fritig, B. 1980. Effect of α-aminooxyacetate, a competitive inhibitor of phenylalanine ammonia-lyase, on the hypersensitive resistance of tobacco to tobacco mosaic virus. Physiol. Plant Pathol. 16:213226.CrossRefGoogle Scholar
174. Massala, R., Legrand, M., and Fritig, B. 1987. Comparative effects of two competitive inhibitors of phenylalanine ammonia-lyase on the hypersensitive resistance of tobacco to tobacco mosaic virus. Plant Physiol. Biochem. 25:217225.Google Scholar
175. Matsunaka, S. 1968. Propanil hydrolysis: Inhibition in rice plants by insecticides. Science 160:13601361.CrossRefGoogle ScholarPubMed
176. Matton, D. P. and Brisson, N. 1989. Cloning, expression and sequence conservation of pathogenesis-related gene transcripts of potato. Mol. Plant-Microbe Interact. 2:325331.CrossRefGoogle ScholarPubMed
177. Mayama, S., Hayashi, S., Yamamoto, R., Tani, T., Ueno, T., and Fukami, H. 1982. Effects of elevated temperature and α-amino-oxyacetate on the accumulation of avenalumins in oat leaves infected with Puccinia coronata f. sp. avenae. Physiol. Plant Pathol. 20:305312.CrossRefGoogle Scholar
178. Mayama, S., Tani, T., and Matsuura, Y. 1981. The production of phytoalexins by oat in response to crown rust, Puccinia coronata f. sp. avenae. Physiol. Plant Pathol. 19:217226.CrossRefGoogle Scholar
179. Mazau, D., Rumeau, D., Esquerr, M. T.é-Tugayé. 1987. Molecular approaches to understanding cell surface interactions between plants and fungal pathogens. Plant Physiol. Biochem. 25:337343.Google Scholar
180. Mellon, J. E. and Halgeson, J. P. 1982. Interaction of a hydroxyproline-rich glycoprotein from tobacco callus with potential pathogens. Plant Physiol. 70:401405.CrossRefGoogle ScholarPubMed
181. Moesta, P. and Grisebach, H. 1982. L-α-Aminooxy-β-phenylpropionic acid inhibits phytoalexin accumulation in soybean with concomitant loss of resistance against Phytophthora megasperma f. sp. glycinea. Physiol. Plant Pathol. 21:6570.CrossRefGoogle Scholar
182. Molin, W. T., Anderson, E., and Porter, C. A. 1986. Effects of alachlor on anthocyanin and lignin synthesis in etiolated sorghum [Sorghum bicolor(L.) Mench.] mesocotyls. Pestic. Biochem. Physiol. 25:105111.CrossRefGoogle Scholar
183. Morandi, D. 1989. Effect of endomycorrhizal infection and biocides on phytoalexin accumulation in soybean roots. Agric. Ecosys. Environ. 29:303305.CrossRefGoogle Scholar
184. Mould, M. J. R., Boland, G. J., and Robb, J. 1991. Ultrastructure of the Colletotrichum trifolii-Medicago sativa pathosystem. I. Pre-penetration events. Physiol. Mol. Plant Pathol. 38:179194.CrossRefGoogle Scholar
185. Muñoz, R., Martinez-Martinez, A., Ros-Barceló, A., and Pedreño, M. A. 1990. Effect of 4-amino-6-methyl-3-phenylamino-1,2,4-triazin-5(4H)-one on the lignification process catalysed by peroxidase from lupin (Lupinus albus). Pestic. Sci. 28:283288.CrossRefGoogle Scholar
186. Nasu, K., Shiraishi, T., Yoshioka, H., Hori, N., Ichinose, Y., Yamada, T., and Oku, H. 1992. An endogenous suppressor of the defense response in Pisum sativum . Plant Cell Physiol. 33:617626.Google Scholar
187. Noe, W., Langebartles, C., and Seitz, H. V. 1980. Anthocyanin accumulation and PAL activity in a suspension culture of Daucus carota L. Inhibition by L-α-aminooxy-β-phenylpropionic acid and t-cinnamic acid. Planta 149:283287.Google Scholar
188. Noga, G., Walter, M., Barthlott, W. and Petry, W. 1991. Quantitative evaluation of epicuticular wax alteration as induced by surfactant treatment. Angew. Botanik. 65:239252.Google Scholar
189. Nothnagel, E. A., McNeil, M., Albersheim, P., and Dell, A. 1983. Host-pathogen interactions. XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiol. 71:916926.Google ScholarPubMed
190. Ogawa, Y., Tsuruoka, T., Inouye, S., and Niida, T. 1973. Studies on a new antibiotic SF-1293. II. Chemical structure of antibiotic SF-1293. Sci. Rep. Meiji Seika Kaisha 13:42–18.Google Scholar
191. Ohana, P., Benziman, M., and Delmer, D. P. 1993. Stimulation of callose synthesis in vivo correlates with changes in intracellular distribution of the callose synthase activator β-furfuryl-β-glucoside. Plant Physiol. 101:187191.CrossRefGoogle ScholarPubMed
192. Ohana, P., Delmer, D. P., Volman, G., Steffens, J. C., Matthews, D. E., and Benziman, M. 1992. β-Furfuryl-β-glucoside: an endogenous activator of higher plant UDP-glucose:(1-3)-β-glucan synthase. Biological activity, distribution, and in vitro synthesis. Plant Physiol. 98:708715.Google Scholar
193. Oku, H., Shiraishi, T., and Ouchi, S. 1977. Suppression of induction of phytoalexin pisatin, by low-molecular-weight substances from spore germination fluid of pea pathogen. Mycosphaerella pinodes. Naturwissenschaften 64:643644.CrossRefGoogle Scholar
194. Oku, H., Shiraishi, T., and Ouchi, S. 1987. Role of specific suppressors in pathogenesis of Mycosphaerella species. p. 145156 in Nishimura, S., Vance, C. P., and Doke, N. eds. Molecular Determinants of Plant Diseases. Japan Sci. Soc. Press/Springer-Verlag, Tokyo.Google Scholar
195. Oku, H., Shiraishi, T., Ouchi, S., and Ishiura, M. 1980. A new determinant of pathogenicity in fungal plant disease. Naturwissenschaften 67:310311.CrossRefGoogle Scholar
196. Omura, S., Murata, M., Hanaki, H., Hinotozawa, K., Oiwa, R., and Tanaka, H. 1984. Phosalacine. a new herbicidal antibiotic containing phosphinothricin. Fermentation, isolation, biological activity, and mechanism of action. J. Antibiot. 37:829835.Google ScholarPubMed
197. Ozeke, Y., Komamine, A., Noguchi, H., and Sankawa, U. 1987. Changes in activities of enzymes involved in flavonoid metabolism during the initiation and suppression of anthocyanin synthesis in carrot suspension cultures regulated by 2,4-dichlorophenoxy-acetic acid. Physiol. Plant. 69:123128.CrossRefGoogle Scholar
198. Pascholati, S. F., Helm, D., and Nicholson, R. L. 1985. Phenylalanine ammonia-lyase and susceptibility of the maize mesocotyl to Helminthosporium maydis . Physiol. Plant Pathol. 27:345356.CrossRefGoogle Scholar
199. Paxton, J. D. 1988. Fungal elicitors of phytoalexins and their potential use in agriculture. p. 109119 in Cutler, H. G., ed., Biologically Active Natural Products; Potential Use in Agriculture. Am. Chem. Soc. Symp. Ser. No. 380. ACS Books, Washington, DC.CrossRefGoogle Scholar
200. Peever, T. L. and Higgins, V. J. 1989. Suppression of the activity of non-specific elicitors from Cladosporium fulvum by intercellular fluids from tomato leaves. Physiol. Mol. Plant Pathol. 43:471482.CrossRefGoogle Scholar
201. Permulla, C. J. and Heath, M. C. 1991. The effects of inhibitors of various cellular processes on the wall modification induced in bean leaves by the cowpea rust fungus. Physiol. Mol. Plant Pathol. 38:293300.CrossRefGoogle Scholar
202. Pierpoint, W. S., Tatham, A. S., and Pappin, O.J.C. 1987. Identification of the virus-induced protein of tobacco leaves that resembles the sweet-protein thaumatin. Physiol. Mol. Plant Pathol. 126:193203.Google Scholar
203. Prattelli, M., de Nicola, M. G., and Castrogiovanni, V. 1971. The effect of kinetin on amaranthin synthesis in Amaranthus tricolor in darkness. Phytochemistry 10:289293.CrossRefGoogle Scholar
204. Rahe, J. E., Lévesque, C. A., and Johal, G. S. 1990. Synergistic role of soil fungi in the herbicidal efficacy of glyphosate. p. 260275 in Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides. Am. Chem. Soc. Symp. Ser. No. 439. ACS Books, Washington, DC.CrossRefGoogle Scholar
205. Ride, J. P. and Barber, M. S. 1987. The effects of various treatments on induced lignification and the resistance of wheat to fungi. Physiol. Mol. Plant Pathol. 31:349360.CrossRefGoogle Scholar
206. Robinson, T. 1980. Miscellaneous unsaponifiable lipids. p. 110132 in The Organic Constituents of Higher Plants. Cordus Press, N. Amherst, MA.Google Scholar
207. Roby, D., Toppan, A., and Esquerr, M. T.é-Tugayé. 1985. Cell-surfaces in plant-microorganism interactions. V. Elicitors of fungal and of plant origin trigger the synthesis of ethylene and of cell-wall hydroxyproline-rich glycoprotein in plants. Plant Physiol. 77:700704.Google ScholarPubMed
208. Saindrenan, P., Barchietto, T., and Bompeix, G. 1988. Modification of the phosphite induced resistance response in leaves of cowpea infected with Phytophthora cryptogea by α-aminooxyacetate. Plant Sci. 58:245252.CrossRefGoogle Scholar
209. Salzwedel, J. L., Daub, M. E., and Haung, J. 1989. Effects of singlet oxygen quenchers and pH on the bacterially induced hypersensitive reaction in tobacco suspension cell cultures. Plant Physiol. 90:2528.CrossRefGoogle ScholarPubMed
210. Sands, D. C., Miller, R. V., and Ford, E. J. 1990. Biotechnological approaches to control of weeds with pathogens. p. 184191 in Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides. Am. Chem. Soc. Symp. Ser. No. 439. ACS Books, Washington, DC.CrossRefGoogle Scholar
211. Schedletszy, E., Shmuel, M., Trainin, T., Kalman, S., and Delmer, D. 1992. Cell wall structure in cells adapted to growth on the cellulose-synthesis inhibitor 2,6-dichlorobenzonitrile. Plant Physiol. 100:120130.Google Scholar
212. Scheepens, P.C. 1987. Joint action of Cochliobolus lunatus and atrazine on Echinochloa crus-galli (L.) Beauv. Weed Res. 27:4347.CrossRefGoogle Scholar
213. Schisler, D. A., Jackson, M. A., and Bothast, R.J. 1991. Influence of nutrition during conidiation of Colletotrichum truncatum on conidial germination and efficacy in inciting disease in Sesbania exaltata . Phytopathology 81:458461.CrossRefGoogle Scholar
214. Schmidt, P. E., Parniske, M., and Wermer, D. 1992. Production of the phytoalexin glyceollin I by soybean roots in response to symbiotic and pathogenic infection. Bot. Acta 105:1825.CrossRefGoogle Scholar
215. Sharon, A. and Gressel, J. 1991. Elicitation of a flavonoid phytoalexin accumulation in Cassia obtusifolia by a mycoherbicide: Estimation by AlCl3-spectofluorimetry. Pestic. Biochem. Physiol. 41:142149.CrossRefGoogle Scholar
216. Sharon, A., Amsellem, Z., and Gressel, J. 1992. Glyphosate suppression of an elicited defense response. Increased susceptibility of Cassia obtusifolia to a mycoherbicide. Plant Physiol. 98:654659.Google ScholarPubMed
217. Sharon, A., Ghirlando, R., and Gressel, J. 1992. Isolation, purification, and identification of 2-(p-hydroxyphenoxy)-5,6-dihydroxychromone: a fungal induced phytoalexin. Plant Physiol. 98:303308.CrossRefGoogle Scholar
218. Sherwood, R. I. and Vance, C. P. 1976. Histochemistry of papillae formed in reed canarygrass leaves in response to noninfecting pathogenic fungi. Phytopathology 66:503510.CrossRefGoogle Scholar
219. Shimomura, T. 1971. Necrosis and localization of infection in local lesion hosts. Phytopathol. Z. 70:185196.CrossRefGoogle Scholar
220. Shiraishi, T., Oku, H., Yamashita, M., and Ouchi, S. 1978. Elicitor and suppressor of pisatin induction in spore germination fluid of pea pathogen, Mycosphaerella pinodes . Ann. Phytopathol. Soc. Japan 44:659665.CrossRefGoogle Scholar
221. Shiraishi, T., Saitoh, K., Kim, H. M., Kato, T., Tahara, M., Oku, H., Yamada, Y., and Ichinose, Y. 1992. Two suppressors, suppressins A and B, secreted by a pea pathogen, Mycosphaerella pinodes . Plant Cell Physiol. 33:663667.Google Scholar
222. Shiraishi, T., Yamada, T., Saitoh, K., Kato, T., Toyoda, K., Yoshioka, H., Kim, H. M., Ichinose, Y., Tahara, M., and Oku, H. 1994. Suppressors: determinants of specificity produced by plant pathogens. Plant Cell Physiol. 35:11071119.CrossRefGoogle Scholar
223. Shiraishi, T., Yamaoka, N., and Kunoh, H. 1989. Association between increased phenylalanine ammonia-lyase activity and cinnamic acid synthesis and the induction of temporary inaccessibility caused by Erysiphe graminis primary germ tube penetration of the barley leaf. Physiol. Mol. Plant Pathol. 34:7583.CrossRefGoogle Scholar
224. Smith, D. A. 1982. Toxicity of phytoalexins. p. 218252 in Bailey, J. A. and Manfield, J. W., eds. Phytoalexins. John Wiley and Sons, New York.Google Scholar
225. Smith, R. J. Jr. 1982. Integration of microbial herbicides with existing pest management programs. p. 189203 in Charudattan, R. and Walker, H. L., eds. Biological Control of Weeds with Plant Pathogens. John Wiley and Sons, New York.Google Scholar
226. Smith, R. J. Jr. 1986. Biological control of northern jointvetch (Aeschynomene virginica) in rice (Oryza sativa) and soybeans (Glycine max)—a researcher's view. Weed Sci. 34(Suppl. 1): 1723.CrossRefGoogle Scholar
227. Smith, R. J. Jr. 1991. Integration of biological control agents with chemical pesticides. p. 189208 in TeBeest, D. O., ed. Microbial Control of Weeds. Chapman and Hall, New York.CrossRefGoogle Scholar
228. Somssich, I. E., Schmelzer, E., Bollmann, J., and Hahlbrock, K. 1986. Rapid activation by fungal elicitor of genes encoding “pathogenesis-related” proteins in cultured parsley cells. Proc. Natl. Acad. Sci. U.S.A. 83:24272430.CrossRefGoogle ScholarPubMed
229. Somssich, J. E., Schmelzer, E., Kawcleack, P., and Hahlbrock, K. 1988. Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley. Mol. Gen. Genet. 213:9398.CrossRefGoogle ScholarPubMed
230. Sorsa, K. K., Nordheim, E. V., and Andrews, J. H. 1988. Integrated control of Eurasian water milfoil, Myriophyllum spicatum, by a fungal pathogen and a herbicide. J. Aquat. Plant Manage. 26:1217.Google Scholar
231. Still, G. G., Davis, D. G., and Zander, G. L. 1970. Plant epicuticular lipids: Alteration by herbicidal carbamates. Plant Physiol. 46:307314.CrossRefGoogle ScholarPubMed
232. Storti, E., Pelucchini, D., Tegri, S., and Scala, A. 1988. A potential defense mechanism of tomato against the late blight disease is suppressed by germinating sporangia-derived substances from Phytophthora infestans. J. Phytopathol. 121:275282.CrossRefGoogle Scholar
233. Strack, D., Tkotz, N., and Klug, M. 1978. Phenylpropanoid metabolism in cotyledons of Raphanus sativus and the effect of competitive in vivo inhibition of L-phenylalanine ammonia-lyase (PAL) by hydroxylamine derivatives. Z. Pflanzenphysiol. 89:343353.CrossRefGoogle Scholar
234. Strobel, G., Kenfield, D., Bunkers, G., Sugawara, F., and Clardy, J. 1991. Phytotoxins as potential herbicides. Experientia 47:819826.CrossRefGoogle Scholar
235. Stübler, D. and Buchenauer, H. 1993. Antiviral properties of lichenan (β(1–3,1–4)D-glucan) in tobacco. p. 455 in Fritig, B. and Legrand, M., eds., Mechanisms of Plant Defense Responses. Kluwer Acad. Publishers, Boston. MA.CrossRefGoogle Scholar
236. Suttle, J. R. and Schreiner, D. R. 1982. Effects of DPX-4189 [2-chloro-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino-carbonyl]benzenesulfonamide] on anthocyanin synthesis, phenylalanine ammonia-lyase activity, and ethylene production in soybean hypocotyls. Can. J. Bot. 60:741745.CrossRefGoogle Scholar
237. Suttle, J. R., Swanson, H. C., and Schreiner, D. R. 1983. Effect of chlorsulfuron on phenylpropanoid metabolism in sunflower seedlings. J. Plant Growth Regul. 2:137149.CrossRefGoogle Scholar
238. TeBeest, D. O., ed. 1991. Microbial Control of Weeds. Chapman and Hall. New York. 284 p.CrossRefGoogle Scholar
239. Tevini, M. and Steinmüller, D. 1987. Influence of light. UV-B radiation, and herbicides on wax biosynthesis of cucumber seedlings. J. Plant Physiol. 131:111121.Google Scholar
240. Tutschek, R. 1982. An evaluation of phenylpropanoid metabolism during cold-induced sphagnorubin synthesis in Sphagnum magellanicum BRID. Planta 155:301306.CrossRefGoogle ScholarPubMed
241. Tutschek, R. 1982. Interference of L-α-aminooxy-β-phenylpropionic acid with cold-induced sphagnorubin synthesis in Sphagnum magellanicum BRID. Planta 155:307309.CrossRefGoogle Scholar
242. Vallee, J. C., Paynot, M., Martin, C., Vansuyt, G., and Prevost, J. 1975. Action de molecules et proprietes hormonales sur l'activite phenylalanine ammoniac-lyase. Phytochemistry 14:21472151.CrossRefGoogle Scholar
243. Vidhyasekaran, P. 1988. Phytoalexin and disease resistance. p. 83107 in Physiology of Disease Resistance in Plants, Vol. I. CRC Press, Boca Raton, FL.Google Scholar
244. Vidhyasekaran, P. 1988. Host enzymes and disease resistance. p. 518 in Physiology of Disease Resistance in Plants, Vol. II. CRC Press, Boca Raton, FL.Google Scholar
245. Vidhyasekaran, P. 1988. Plant growth regulators and disease resistance, p. 1932 in Physiology of Disease Resistance in Plants, Vol. II. CRC Press, Boca Raton, FL.Google Scholar
246. Vidhyasekaran, P. 1988. Physiology of resistance against virus diseases. p. 83117 in Physiology of Disease Resistance in Plants, Vol. II. CRC Press, Boca Raton, FL.Google Scholar
247. Waldmüller, T. and Greisbach, H. 1987. Effect of R-(1-amino-2-phenylethyl)-phosphonic acid on glyceollin accumulation and expression of resistance in Phytophthora megasperma f. sp. glycinea in soybean. Planta 172:424430.Google ScholarPubMed
248. Walker, H. L. 1982. A seedling blight of sicklepod caused by Alternaria cassiae . Plant Dis. 66:426428.CrossRefGoogle Scholar
249. Walker, H. L. and Boyette, C. D. 1985. Biocontrol of sicklepod (Cassia obtusifolia) in soybean (Glycine max) with Alternaria cassiae . Weed Sci 33:212215.CrossRefGoogle Scholar
250. Walker, H. L. and Riley, J. A. 1982. Evaluation of Alternaria cassiae for the biocontrol of sicklepod (Cassia obtusifolia). Weed Sci. 30:651654.CrossRefGoogle Scholar
251. Walker-Simmons, M., Hadwiger, L. A., and Ryan, C. A. 1983. Chitosan and pectic polysaccharides both induce the accumulation of the antifungal phytoalexin pisatin in pea pods and antinutrient proteinase inhibitors in tomato leaves. Biochem. Biophys. Res. Commun. 110:194199.CrossRefGoogle ScholarPubMed
252. Walker-Simmons, M., Jin, D., West, C. A., Hadwiger, L. A., and Ryan, C. A. 1984. Comparison of proteinase inhibitor-inducing and phytoalexin elicitor activities of a pure fungal endopolygalacturonase, pectic fragments, and chitosans. Plant Physiol. 76:833836.CrossRefGoogle ScholarPubMed
253. Walter, M. H., Liue, J.-W., Grand, C., Lamb, C. J., and Hess, D. 1990. Bean pathogenesis-related (PR) proteins deduced from elicitor-induced transcripts are members of a ubiquitous new class of conserved PR proteins inducing pollen allergens. Mol. Gen. Genet. 222:353360.CrossRefGoogle ScholarPubMed
254. Ward, E. W. B., Cahill, D. M., and Bhattacharyya, M. K. 1989. Abscisic acid suppression of phenylalanine ammonia-lyase activity and mRNA, and resistance of soybeans to Phytophthora megasperma f. sp. glycinea. Plant Physiol. 91:2327.CrossRefGoogle ScholarPubMed
255. Watson, A.K., ed. 1993. Biological Control of Weeds Handbook. Weed Sci. Soc. Am., Champaign, IL. 202 p.Google Scholar
256. Wells, B. H. and Appleby, A. P. 1992. Lactofen increases glyphosate-stimulated shikimate production in little mallow (Malva parviflora). Weed Sci. 40:171173.CrossRefGoogle Scholar
257. White, R. F. 1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410412.CrossRefGoogle ScholarPubMed
258. Wilkinson, R. E. and Hardcastle, W. S. 1969. EPTC effects on sicklepod petiolar fatty acids. Weed Sci. 17:335338.CrossRefGoogle Scholar
259. Wrona, A. F., Vandermolen, G. E., and DeVay, J. E. 1981. Trifluralin-induced changes in hypocotyls of Phaseolus vulgaris in relation to lesion development caused by Rhizoctonia solani Kuhn. Physiol. Plant Pathol. 18:99106.CrossRefGoogle Scholar
260. Wymore, L. A. and Watson, A. K. 1989. Interaction between a velvetleaf isolate of Colletotrichum coccodes and thidiazuron for velvetleaf (Abutilon theophrasti) control in the field. Weed Sci. 37:478483.CrossRefGoogle Scholar
261. Wymore, L. A., Watson, A. K., and Gotlieb, A. R. 1987. Interaction between Colletotrichum coccodes and thidiazuron for control of velvetleaf (Abutilon theophrasti). Weed Sci. 35:377383.CrossRefGoogle Scholar
262. Xuei, X. L., Järlfors, U., and Kuc, J. 1988. Ultrastructural changes associated with systemic resistance of cucumber to disease. Host response and development of Colletotrichum lagenarium in systemically protected leaves. Can. J. Bot. 66:10281038.Google Scholar
263. Yalpani, N., Shulaev, V., and Raskin, I. 1993. Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco. Phytopathology 83:702708.CrossRefGoogle Scholar
264. Yamamoto, H., Holin, H., Tani, T., and Kadota, G. 1977. Phenylalanine ammonia-lyase in relation to the crown rust resistance of oat leaves. Phytopathol. Z. 90:203211.CrossRefGoogle Scholar
265. Yu, S. M., Templeton, G. E., and Wolf, D. C. 1988. Trifluralin concentration and the growth of Fusarium solani f. sp. cucurbitae in liquid medium and soil. Soil Biol. Biochem. 20:607612.Google Scholar
266. Zeigler, E. and Pontzen, R. 1982. Specific inhibition of glucan-elicited glyceollin accumulation in soybeans by an extra-cellular mannan-glycoprotein of Phytophthora megasperma f. sp. glycinea. Physiol. Plant Pathol. 20:321331.CrossRefGoogle Scholar