Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T17:48:06.131Z Has data issue: false hasContentIssue false

Screening and Identification of Glufosinate-Degrading Bacteria from Glufosinate-Treated Soils

Published online by Cambridge University Press:  20 January 2017

Chau-Ling Hsiao
Affiliation:
Department of Agronomy, National Chung-Hsing University, 250 Kuokuang Road, Taichung, Taiwan
Chiu-Chung Young
Affiliation:
Department of Soil and Environmental Sciences, National Chung-Hsing University, 250 Kuokuang Road, Taichung, Taiwan
Ching-Yuh Wang*
Affiliation:
Department of Agronomy, National Chung-Hsing University, 250 Kuokuang Road, Taichung, Taiwan
*
Corresponding author's E-mail: [email protected]

Abstract

In order to select efficient and competitive glufosinate-degrading bacteria, two soils which had been treated with glufosinate annually for more than 5 yr were screened. Three strains tolerant to this herbicide were identified by 16S rDNA analysis as Burkholderia sacchari, Serratia marcescens, and Pseudomonas psychrotolerans. In addition, a moderately tolerant strain, P. citronellolis, was isolated from a soil which had received glufosinate treatment for only 6 mo. In culture medium containing high concentration of glufosinate, the former three strains showed significant ability to degrade this glutamine synthetase inhibitor, suggesting that glufosinate-degrading bacteria would be readily found in soils after a long-term induction or selection. A subsequent biodegradation experiment showed that 30 and 50% of glufosinate was degraded 7 and 21 d after treatment (DAT), respectively, in sterilized soils inoculated with the above-mentioned three tolerant strains. While more than 30% of the glufosinate in nonsterilized soils was degraded 7 DAT by the indigenous edaphic microbes, inoculation with the three selected strains enhanced glufosinate degradation to nearly 50%. A study on the competition from edaphic microorganisms in soils by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that within 21 d after inoculation (DAI), the propagation of B. sacchari and P. psychrotolerans was not affected, whereas that of the less tolerant P. citronellolis was inhibited. This observation suggests that a long-term herbicide exposure is a promotive factor in generating bacterial strains having high degradation efficiency and showing vigorous propagation under the competition pressure arising from indigenous microbes.

Type
Soil, Air, and Water
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahmad, I., Bissett, J., and Malloch, D. 1995a. Influence of the bioherbicide phosphinothricin on interactions between phytopathogens and antagonists. Can. J. Bot. 73:17501760.CrossRefGoogle Scholar
Ahmad, I., Bissett, J., and Malloch, D. 1995b. Effect of phosphinothricin on nitrogen metabolism of Trichoderma species and its implications for their control of phytopathogenic fungi. Pestic. Biochem. Physiol. 53:4959.Google Scholar
Ahmad, I. and Malloch, D. 1995. Interaction of soil microflora with the bioherbicide phosphinothricin. Agric. Ecosys. Environ. 54:165174.Google Scholar
Aislabie, J., Bej, A. J., Ryburn, J., Lloyd, N., and Wilkins, A. 2005. Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil New Zealand. FEMS Microbiol. Ecol. 52:279286.Google Scholar
Amann, R., Ludwig, W., and Schleifer, K. H. 1994. Identification of uncultured bacteria: a challenging task for molecular taxonomists. ASM News. 60:360365.Google Scholar
Bagwell, C. E., Piceno, Y. M., Ashburne-Lucas, A., and Lovell, C. R. 1998. Physiological diversity of the rhizosphere diazotroph assemblages of selected salt marsh grasses. Appl. Environ. MicroBiol. 64:42764282.Google Scholar
Bartsch, K. and Tebbe, C. C. 1989. Initial steps in degradation of phosphinothricin (glufosinate) by soil bacteria. Appl. Environ. MicroBiol. 55:711716.Google Scholar
Bayer, E., Gugel, K. H., Hägele, K., Hagenmaier, H., Jessipow, S., König, W. A., and Zähner, H. 1972. Stoffwechselprodukte von mikroorganismen. Phosphinothricin und phosphinothricyl-alanyl-alanin. Helv. Chim. Acta. 55:224239.Google Scholar
Besemer, K., Moeseneder, M. M., Arrieta, J. M., Herndl, G. J., and Peduzzi, P. 2005. Complexity of bacterial communities in a river-floodplain system (Danube, Austria). Appl. Environ. MicroBiol. 71:609620.Google Scholar
Bray, R. H. and Kurtz, L. T. 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 59:3945.Google Scholar
Bremner, J. M. 1965. Total nitrogen, inorganic forms of nitrogen, organic forms of nitrogen, nitrogen availability indexes. Pages 13241348. in Black, C.A. ed. Methods of Soil Analysis, Part 2, Agronomy 9. Madison, WI American Society of Agronomy. 1149–1255.Google Scholar
Brosius, J., Palmer, M. L., Kennedy, P. J., and Noller, H. F. 1978. Complete nucleotide sequence of a 16S rDNA ribosomal RNA gene from Escherichia coli . Proc. Natl. Acad. Sci. 75:48014805.Google Scholar
Brown, B. J. and Leff, L. G. 1996. Comparison of fatty acid methyl ester analysis with the use of API 20E and NFT strips for identification of aquatic bacteria. Appl. Environ. MicroBiol. 62:21832185.Google Scholar
Caterino, M. S., Cho, S., and Sperling, F. A. H. 2000. The current state of insect molecular systematics: a thriving tower of babel. Annu. Rev. Entomol. 45:154.Google Scholar
Coetzer, E. and Al-Khatib, K. 2001. Photosynthetic inhibition and ammonium accumulation in Palmer amaranth after glufosinate application. Weed Sci. 49:454459.CrossRefGoogle Scholar
Dröge-Laser, W., Broer, I., and Pühler, A. 1992. Transgenic plants containing the phosphinothricin-N-acetyl-transferase gene metabolize the herbicide L-phosphinothricin (glufosinate) differently from untransformed plant. Planta. 187:142151.Google Scholar
[DSMZ] Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH http://www.dsmz.de. Accessed December 20, 2005.Google Scholar
Edwards, U., Rogall, T., Blocker, H., Emde, M., and Bottger, E. C. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acid. Res. 17:78437853.Google Scholar
El-Fantroussi, S. 2000. Enrichment and molecular characterization of a bacterial culture that degrades methoxy-methyl urea herbicides and their aniline derivatives. Appl. Environ. MicroBiol. 66:51105115.Google Scholar
Franco, A. R., Lopez-Siles, F. J., and Cardenas, J. 1996. Resistance to phosphinothricin (glufosinate) and its utilization as a nitrogen source by Chlamydomonas reinhardtii . Appl. Environ. MicroBiol. 62:38343839.Google Scholar
Gelsomino, A., Keijzer-Wolters, A. C., Cacco, G., and van Elsas, J. D. 1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Microbiol. Methods. 38:115.Google Scholar
Gyamfi, S., Pfeifer, U., Stierschneider, M., and Sessitsch, A. 2002. Effects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomanas communities in the rhizosphere. FEMS Microbiol. Ecol. 41:181190.Google Scholar
Hauser, E., Kampfer, P., and Busse, H. J. 2004. Pseudomonas psychrotolerans sp. nov. Int. J. Syst. Evol. MicroBiol. 54:16331637.Google Scholar
Honda, G., Sakakibara, F., Yazaki, K., and Tabata, M. 1988. Isolation of deoxyshikonin, an antidermatophytic principle from Lithospermum erythrorhizon cell cultures. J. Natural Products. 51:152–124.Google Scholar
Loxdale, H. D. and Lushai, G. 1998. Molecular markers in entomology. Bull. Entomol. Res. 88:577600.CrossRefGoogle Scholar
Lynch, M. and Milligan, B. G. 1994. Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3:9199.Google Scholar
Muyzer, G., deWall, E. C., and Uitterlinden, A. G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. MicroBiol. 59:695700.Google Scholar
Muyzer, G. and Smalla, K. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek. 73:127141.Google Scholar
[NCBI] National Center for Biotechnology Information http://www.ncbi.nih.gov/. Accessed August 3, 2005.Google Scholar
Pline, W. A., Lacy, G. H., Stromberg, V., and Hatzios, K. K. 2001. Antibacterial activity of the herbicide glufosinate on Pseudomonas syringae pv glycinea . Pestic. Biochem. Physiol. 71:4855.Google Scholar
Ramos, J. L., Duque, E., and Ramos-Gonzalez, M. 1991. Survival in soils of an herbicide-resistant Pseudomonas putida strain bearing a recombinant TOL plasmid. Appl. Environ. MicroBiol. 57:260266.Google Scholar
Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, New York Cold Spring Harbor, Laboratory Press. 659.Google Scholar
Sancho, J. V., Hernández, F., López, F. J., Hogendoorn, E. A., Dijkman, E., and Van Zoonen, P. 1996. Rapid determination of glufosinate, glyphosate and amino- methylphosphonic acid in environmental water sample using precolumn fluorogenic labeling and coupled-column liquid chromatography. J. Chromatogr. A. 737:7583.Google Scholar
Stackebrandt, E. and Goebel, B. M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846849.Google Scholar
Steckel, G. J., Wax, L. M., Simmons, F. W., and Phillips, W. H. II. 1997. Glufosinate efficacy on annual weeds is influenced by rate and growth stage. Weed Technol. 11:484488.CrossRefGoogle Scholar
Rao, N.S. Subba, ed. 1982. Advances in Agricultural Microbiology. New Delhi, India:. Oxford and IBH Publishing. 229305.Google Scholar
Tada, T., Kanzaki, H., Norita, E., Uchimiya, H., and Nakamura, I. 1996. Decreased symptoms of rice blast disease on leaves of bar-expressing transgenic rice plants following treatment with bialaphos. Mol. Plant-Microbe Interact. 9:762764.Google Scholar
Tebbe, C. C. and Reber, H. H. 1988. Utilization of the herbicide phosphinothricin as a nitrogen source by soil bacteria. Appl. Environ. MicroBiol. 29:103105.Google Scholar
Torsvik, V., Goksøyr, J., and Daae, F. L. 1990b. High diversity in DNA of soil bacteria. Appl. Environ. MicroBiol. 56:782787.Google Scholar
Torsvik, V., Salte, K., Sørheim, R., and Goksøyr, J. 1990a. Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl. Environ. MicroBiol. 56:776781.Google Scholar
Van Elsas, J. D., Mäntynen, V., and Wolters, A. C. 1997. Soil DNA extraction and assessment of the fate of Mycobacterium chlorophenolicum strain PCP-1 in different soils by 16S ribosomal RNA gene sequence based most-probable-number PCR and immunofluorescence. Biol. Fertil. Soils. 24:188195.Google Scholar
Van Soestbergen, A. A. and Lee, C. H. 1969. Pour plate or streak plates? Appl. MicroBiol. 18:1092.Google Scholar
Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. 1995. AFLP—a new technique for DNA fingerprinting. Nucleic Acid Res. 23:44074414.Google Scholar
Vucetich, L. M., Vucetich, J. A., Joshi, C. P., Waite, T. A., and Peterson, R. O. 2001. Genetic (RAPD) diversity in Peromyscus maniculatus populations in a naturally fragmented landscape. Mol. Ecol. 10:3540.Google Scholar
Watts, D. and MacBeath, J. R. 2001. Automated fluorescent DNA sequencing on the ABI PRISM 310 Genetic Analyzer. Method. Mol. Biol. 167:153170.Google Scholar
Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res. 18:65316535.Google Scholar
Wohlleben, W., Arnold, W., Broer, I., Hillemann, D., Strauch, E., and Pühler, A. 1988. Nucleotide sequence of the phosphinothricin-N-acetyl-transferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum . Gene. 70:2537.Google Scholar
Yu, Y. L., Chen, Y. X., Luo, Y. M., Pan, X. D., He, Y. F., and Wong, M. H. 2003. Rapid degradation of butachlor in wheat rhizosphere soil. Chemosphere. 50:771774.Google Scholar
Zhou, X. H. and Wang, C. Y. 2006. Biological and biochemical detection techniques for glufosinate. Weed Sci. 54:413418.Google Scholar