Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T14:46:53.920Z Has data issue: false hasContentIssue false

Rigid Ryegrass (Lolium rigidum) Populations Containing a Target Site Mutation in EPSPS and Reduced Glyphosate Translocation Are More Resistant to Glyphosate

Published online by Cambridge University Press:  20 January 2017

Yazid Bostamam
Affiliation:
School and Agriculture, Food and Wine, University of Adelaide, PMB1 Glen Osmond, South Australia, 5064
Jenna M. Malone*
Affiliation:
School and Agriculture, Food and Wine, University of Adelaide, PMB1 Glen Osmond, South Australia, 5064
Fleur C. Dolman
Affiliation:
School and Agriculture, Food and Wine, University of Adelaide, PMB1 Glen Osmond, South Australia, 5064
Peter Boutsalis
Affiliation:
School and Agriculture, Food and Wine, University of Adelaide, PMB1 Glen Osmond, South Australia, 5064
Christopher Preston
Affiliation:
School and Agriculture, Food and Wine, University of Adelaide, PMB1 Glen Osmond, South Australia, 5064
*
Corresponding author's E-mail: [email protected]

Abstract

Glyphosate is widely used for weed control in the grape growing industry in southern Australia. The intensive use of glyphosate in this industry has resulted in the evolution of glyphosate resistance in rigid ryegrass. Two populations of rigid ryegrass from vineyards, SLR80 and SLR88, had 6- to 11-fold resistance to glyphosate in dose-response studies. These resistance levels were higher than two previously well-characterized glyphosate-resistant populations of rigid ryegrass (SLR77 and NLR70), containing a modified target site or reduced translocation, respectively. Populations SLR80 and SLR88 accumulated less glyphosate, 12 and 17% of absorbed glyphosate, in the shoot in the resistant populations compared with 26% in the susceptible population. In addition, a mutation within the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) where Pro106 had been substituted by either serine or threonine was identified. These two populations are more highly resistant to glyphosate as a consequence of expressing two different resistance mechanisms concurrently.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arnaud, L., Nurit, F., Ravanel, P., and Tissut, M. 1994. Distribution of glyphosate and of its target enzyme inside wheat plants. Pestic. Sci. 40:217223.Google Scholar
Baerson, S. R., Rodriguez, D. J., Tran, M., Feng, Y., Biest, N. A., and Dill, G. M. 2002. Glyphosate-resistant goosegrass: identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129:12651275.CrossRefGoogle ScholarPubMed
Chase, R. L. and Appleby, A. P. 1979. Effects of humidity and moisture stress on glyphosate control of Cyperus rotundus L. Weed Res. 19:241246.Google Scholar
Cruz-Hipolito, H., Osuna, M. D., Heredia, A., Ruiz-Santaella, J. P., and De Prado, R. 2009. Nontarget mechanisms involved in glyphosate tolerance found in Canavalia ensiformis plants. J. Agric. Food Chem. 57:48444848.Google Scholar
Devine, M. D. and Preston, C. 2000. The molecular basis of herbicide resistance. Pages 72104 in Cobb, A. H. and Kirkwood, R. C., eds. Herbicides and Their Mechanisms of Action. Sheffield, UK Sheffield Academic Press.Google Scholar
Feng, P. C. C., Tran, M., Chiu, T., Sammons, R. D., Heck, G. R., and CaJacob, C. A. 2004. Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation and metabolism. Weed Sci. 52:498505.Google Scholar
Gaines, T. A., Zhang, W., Wang, D., Bukun, B., Chisholm, S. T., Shaner, D. L., Nissen, S. J., Patzoldt, W. L., Tranel, P. J., Culpepper, A. S., Grey, T. L., Webster, T. M., Vencill, W. K., Sammons, R. D., Jiang, J., Preston, C., Leach, J. E., and Westra, P. 2010. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc. Natl. Acad. Sci. USA. 107:10291034.Google Scholar
Healy-Fried, M. L., Funke, T., Priestman, M. A., Han, H., and Schonbrunn, E. 2007. Structural basis of glyphosate tolerance resulting from mutations of Pro101 in Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase. J. Biol. Chem. 282:3294932955.Google Scholar
Hoagland, D. R. and Arnon, D. I. 1938. The water-culture method for growing plants without soil. Calif. Agric. Exp. Station Circular. 347:132.Google Scholar
Jasieniuk, M., Ahmad, R., Sherwood, A. M., Firestone, J. L., Perez-Jones, A., Lanini, W. T., Mallory-Smith, C., and Stednick, Z. 2008. Glyphosate-resistant Italian ryegrass (Lolium multiflorum) in California: distribution, response to glyphosate and molecular evidence for an altered target enzyme. Weed Sci. 56:496502.Google Scholar
Jasieniuk, M., Brûlé-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.CrossRefGoogle Scholar
Jordan, T. N. 1977. Effects of temperature and relative humidity on the toxicity of glyphosate to bermudagrass (Cynodon dactylon). Weed Sci. 25:448451.Google Scholar
Kaundun, S. S., Zelaya, I. A., Dale, R. P., Lycett, A. J., Carter, P., Sharples, K. R., and McIndoe, E. 2008. Importance of the P106S target-site mutation in conferring resistance to glyphosate in a goosegrass (Eleusine indica) population from the Philippines. Weed Sci. 56:637646.Google Scholar
Lorraine-Colwill, D. F., Powles, S. B., Hawkes, T. R., Hollinshead, P. H., Warner, S. A. J., and Preston, C. 2003. Investigations into the mechanism of glyphosate resistance in Lolium rigidum . Pestic. Biochem. Physiol. 72:6272.Google Scholar
Lorraine-Colwill, D. F., Powles, S. B., Hawkes, T. R., and Preston, C. 2001. Inheritance of evolved glyphosate resistance in Lolium rigidum (Gaud.). Theor. Appl. Genet. 102:545550.Google Scholar
McWhorter, C. G. and Azlin, W. R. 1978. Effects of environment on the toxicity of glyphosate to johnsongrass (Sorghum halepense) and soybean (Glycine max). Weed Sci. 26:605608.Google Scholar
Nandula, V. K., Reddy, K. N., Poston, D. H., Rimando, A. M., and Duke, S. O. 2008. Glyphosate tolerance mechanism in Italian ryegrass (Lolium multiflorum) from Mississippi. Weed Sci. 56:344349.Google Scholar
Ng, C. H., Wickneswary, R., Salmijah, S., Teng, Y. T., and Ismail, B. S. 2003. Gene polymorphisms in glyphosate-resistant and susceptible biotypes of Eleusine indica from Malaysia. Weed Res. 43:108115.Google Scholar
Ng, C. H., Wickneswary, R., Salmijah, S., Teng, Y. T., and Ismail, B. S. 2004. Glyphosate resistance in Eleusine indica (L.) Gaertn. from different origins and polymerase chain reaction amplification of specific alleles. Aust. J. Agric. Res. 55:407414.Google Scholar
Padgette, S. R., Re, D. R., Gasser, C. S., Eichholtz, D. A., Frazier, R. B., Hironaka, C. M., Levine, E. B., Shah, D. M., Fraley, R. T., and Kishore, G. M. 1991. Site-directed mutagenesis of a conserved region of the 5-enolpyruvylshikimate-3-phosphate synthase active site. J. Biol. Chem. 266:2236422369.Google Scholar
Perez-Jones, A., Park, K. W., Polge, N., Colquhoun, J., and Mallory-Smith, C. 2007. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum . Planta. 226:395404.Google Scholar
Powles, S. B., Lorraine-Colwill, D. F., Dellow, J. J., and Preston, C. 1998. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 46:604607.CrossRefGoogle Scholar
Pratley, J., Urwin, N., Stanton, R., Baines, P., Broster, J., Cullis, K., Schafer, D., Bohn, J., and Krueger, R. 1999. Resistance to glyphosate in Lolium rigidum . I. Bioevaluation. Weed Sci. 47:405411.Google Scholar
Preston, C. 2010. Glyphosate-resistant rigid ryegrass in Australia. Pages 233247 in Nandula, V. K., ed. Glyphosate Resistance in Crops and Weeds: History, Development, and Management. Hoboken, NJ John Wiley & Sons.CrossRefGoogle Scholar
Preston, C. 2011. Australian Glyphosate Resistance Register. Australian Glyphosate Sustainability Working Group. http://www.glyphosateresistance.org.au. Accessed September 12, 2011.Google Scholar
Preston, C., Wakelin, A. M., Dolman, F. C., Bostamam, Y., and Boutsalis, P. 2009. A decade of glyphosate-resistant Lolium around the world: mechanisms, genes, fitness and agronomic management. Weed Sci. 57:435441.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Sprankle, P., Meggitt, W. F., and Penner, D. 1975. Absorption, action and translocation of glyphosate. Weed Sci. 23:235240.CrossRefGoogle Scholar
Steinrucken, H. C. and Amrhein, N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic-acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94:12071212.CrossRefGoogle ScholarPubMed
Wakelin, A. M., Lorraine-Colwill, D. F., and Preston, C. 2004. Glyphosate resistance in four different populations of Lolium rigidum is associated zwith reduced translocation of glyphosate to meristematic zones. Weed Res. 44:453459.Google Scholar
Wakelin, A. M. and Preston, C. 2006. A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Res. 46:432440.CrossRefGoogle Scholar
Yu, Q., Cairns, A., and Powles, S. B. 2007. Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta. 225:499513.Google Scholar