Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T06:18:27.094Z Has data issue: false hasContentIssue false

Evolution of Glyphosate-Resistant Crop Technology

Published online by Cambridge University Press:  20 January 2017

Jerry M. Green*
Affiliation:
Pioneer Hi-Bred, Stine-Haskell Research Center Bldg. 210, Newark, DE 19714-0030
*
Corresponding author's E-mail: [email protected]

Abstract

New and improved glyphosate-resistant (GR) crops continue to be rapidly developed. These crops confer greater crop safety to multiple glyphosate applications, higher rates, and wider application timings. Many of these crops will also have glyphosate resistance stacked with traits that confer resistance to herbicides with other modes of actions to expand the utility of existing herbicides and to increase the number of mixture options that can delay the evolution of GR weeds. Some breeding stacks of herbicide resistance traits are currently available, but the trend in the future will be to combine resistance genes in molecular stacks. The first example of such a molecular stack has a new metabolically based mechanism to inactivate glyphosate combined with an active site-based resistance for herbicides that inhibit acetolactate synthase (ALS). This stack confers resistance to glyphosate and all five classes of ALS-inhibiting herbicides. Other molecular stacks will include glyphosate resistance with resistance to auxin herbicides and herbicides that inhibit acetyl coenzyme A carboxylase (ACCase) and 4-hydroxyphenyl pyruvate dioxygenase (HPPD). Scientists are also studying a number of other herbicide resistance transgenes. Some of these new transgenes will be used to make new multiple herbicide-resistant crops that offer growers more herbicide options to meet their changing weed management needs and to help sustain the efficacy of glyphosate.

Type
Special Topics
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

AGBIOS 2008. Agbios GM Database. Available at http://www.agbios.com/dbase.php. Accessed: January 9, 2008.Google Scholar
Anderson, P. C. and Georgeson, M. 1989. Herbicide-tolerant mutants of corn. Genome. 34:994999.Google Scholar
[APHIS] Animal and Plant Health Inspection Service 2005. Environmental impact statement; petition for deregulation of genetically engineered glyphosate-tolerant creeping bentgrass. Federal Register. 70:1835218353.Google Scholar
[APHIS] Animal and Plant Health Inspection Service 2007. Return to regulated status of alfalfa genetically engineered for tolerance to the herbicide glyphosate. Federal Register. 72:1373513736.Google Scholar
[APHIS] Animal and Plant Health Inspection Service 2008. Status of Permits, Notifications, and Petitions. http://www.aphis.usda.gov/biotechnology/status.shtml. Accessed: January 11, 2008.Google Scholar
Arias, R. S., Netherland, M. D., Atul, P., and Dayan, F. D. 2005. Biology and molecular evolution of resistance to phytoene desaturase inhibitors in Hydrilla verticillata and its potential use to produce herbicide-resistant crops. Pest Manag. Sci. 61:258268.Google Scholar
Barrett, M., Polge, N., Baerg, R., Bradshaw, L. D., and Poneleit, C. 1997. Role of cytochrome P450s in herbicide metabolism and selectivity and multiple herbicide metabolizing cytochrome P450 activities in maize. Pages 3550. in Hatzios, K. K. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. Dordrecht, The Netherlands Kluwer Academic.CrossRefGoogle Scholar
Beckie, H. J., Harker, K. N., Hall, L. M., et al. 2006. A decade of herbicide-resistant crops in Canada. Can. J. Plant Sci. 86:12431264.Google Scholar
Bedbrook, J. R., Chaleff, R. S., Falco, S. C., Mazur, B. J., Somerville, C. R., and Yadav, N. S., inventors. 1995 Jan 3. E. I. Du Pont de Nemours and Company, assignee Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase. U.S. patent 5,378,824.Google Scholar
Behrens, M. R., Mutlu, N., Cjairabprtu, S., Jiang, W., LaVallee, B. J., Herman, P. L., Clemente, T. E., and Weeks, D. P. 2007. Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science. 316:11851188.Google Scholar
Bisht, N. C., Burma, P. K., and Pental, D. 2004. Development of 2,4-D-resistant transgenics in Indian oilseed mustard (Brassica juncea). Curr. Sci. 87:367370.Google Scholar
Bowen, B. A., Bruce, W. B., Lu, G., Sims, L. E., and Tagliani, L. A., inventors. 2003 Apr 29. Pioneer Hi-Bred International, Inc., assignee Synthetic promoters. U.S. patent 6,555,673 B1.Google Scholar
Buchanan-Wollaston, V., Naser, A., and Cannon, F. C. 1992. A plant selectable marker gene based on the detoxification of the herbicide dalapon. Plant Cell Rep. 11:627631.Google Scholar
CaJacob, C. A., Feng, P. C. C., Reiser, S. E., and Padgette, S. R. 2007. Genetically modified herbicide-resistant crops. Pages 283302. in Krämer, W. and Schirmer, U. Modern Crop Protection Chemicals. Volume 1. Weinheim, Germany Wiley-VCH Verlag.Google Scholar
Castle, L. A., Siehl, D. L., Groton, R., et al. 2004. Discovery and directed evolution of a glyphosate tolerance gene. Science. 304:11511154.Google Scholar
[CFIA] Canadian Food Inspection Agency 2008. Notices of Submission for Approval of Novel Food and Livestock Feed Use that Includes an Environmental Safety Assessment of Cotton Genetically Modified For Herbicide Tolerance from Bayer CropScience Inc. http://www.inspection.gc.ca/english/plaveg/bio/subs/2007/20070501e.shtml. Accessed: March 17, 2008.Google Scholar
Chaboute, M., Chaubet, N., Philipps, G., Ehling, M., and Gigot, C. 1987. Genomic organization and nucleotide sequences of two histone H3 and two histone H4 genes from Arabidopsis thaliana . Plant Mol. Biol. 8:179191.CrossRefGoogle ScholarPubMed
Charles, D. 2001. Lords of the Harvest: Biotech, Big Money, and the Future of Food. Cambridge, MA Perseus. 348.Google Scholar
Christensen, A. H. and Quail, P. H. 1996. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 5:213218.CrossRefGoogle ScholarPubMed
Coble, H. D. and Byrd, J. D. 1992. Interference of weeds with cotton. Pages 7384. in McWhorter, C. G. and Abernathy, J. R. Weeds of Cotton: Characterization and Control. Memphis, TN The Cotton Foundation.Google Scholar
Dam, T., Guida, A. D., Hazel, C. B., Li, B., and Williams, M. E. 2007 Mar 9. A maize gene for cytochrome P450 conferring resistance to a wide range of herbicide types and its use. U.S. patent application 20077214515 A1, 1–64.Google Scholar
Davies, J. and Caseley, J. C. 1999. Herbicide safeners: a review. Pest. Sci. 55:10431058.Google Scholar
Didierjean, L., Gondet, L., Perkins, R., Lau, S. M. C., Schaller, H., O'Keefe, D. P., and Werck-Reichart, D. 2002. Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiol. 130:179189.Google Scholar
Dill, G. M., CaJacob, C. A., and Padgette, S. R. 2008. Glyphosate-resistant crops: adoption, use and future considerations. Pest Manag. Sci. 64:326331.Google Scholar
Ellis, J. M., Trolinder, L., Baker, S., and Holloway, J. 2008. Glytol cotton—new herbicide tolerant cotton from Bayer CropScience. in. Proceedings of the Southern Beltwide Cotton Conference. Memphis, TN National Cotton Council of America. In press.Google Scholar
Elmore, G. A., Roeth, F. W., Nelson, L. A., Shapiro, C. A., Klein, R. N., Knezevic, S. Z., and Martin, A. R. 2001. Glyphosate-resistant soybean cultivar yields compared with sister lines. Agron. J. 93:408412.Google Scholar
[EXTOXNET] Extension Toxicology Network 2007. Pesticide Information Project of Cooperative Extension Offices. http://pmep.cce.cornell.edu/profiles/extoxnet/. Accessed: November 5, 2007.Google Scholar
Foresman, C. and Glasgow, L. 2008. Grower perceptions and experiences with glyphosate-resistant weeds. Pest Manag. Sci. 64:388391.Google Scholar
Franz, J. E., Mao, M. K., and Sikorski, J. A. 1996. Glyphosate: A Unique Global Pesticide. Washington, DC American Chemical Society. 653.Google Scholar
Fukumori, F. and Hausinger, R. P. 2007. Purification and characterization of 2,4-dichlorophenoxyacetate/α-ketoglutarate dioxygenase. J. Biol. Chem. 268:2431124317.CrossRefGoogle Scholar
Grain Industry Working Group 2003. Conditions for the Introduction of Genetically Modified Wheat. http://www.cwb.ca/public/en/hot/biotechnology/pdf/gmowheat.pdf. Accessed: January 24, 2008.Google Scholar
Green, J. M., Hazel, C. B., Forney, D. R., and Pugh, L. M. 2008. New multiple-herbicide crop resistance and formulation technology to augment the utility of glyphosate. Pest Manag. Sci. 64:332339.CrossRefGoogle ScholarPubMed
Gustafson, D. I. 2008. Sustainable use of glyphosate in North American cropping systems. Pest Manag. Sci. 64:409416.Google Scholar
Hammer, P. E., Hinson, T. K., Duck, N. B., and Koziel, M. G., inventors. 2007 May 10. 5 10. Athenix Corporation, assignee Methods to confer herbicide resistance. U.S. patent application. 20070107078 A1, 1–53.Google Scholar
Hatzios, K. K. and Burgos, N. 2004. Metabolism-based herbicide resistance: regulation by safeners. Weed Sci. 52:454467.Google Scholar
Herman, P., Behrens, L. M., Chakraborty, S., Chrastil, B. M., Barycki, J., and Weeks, D. P. 2005. A three-component dicamba O-demethylase from Pseudomonas maltophilia, Strain DI6: gene isolation, characterization, and heterozygous expression. J. Biol. Chem. 280:2475924767.Google Scholar
Herouet, C., Esdaile, D. J., Mallyon, B. A., Debruyne, E., Schulz, A., Currier, T., Hendicks, K., van der Klis, R. J., and Rouan, D. 2005. Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate-ammonium herbicide in transgenic plants. Regul. Toxicol. Pharmacol. 41:134149.Google Scholar
Hirose, S., Kawahigashi, H., Ozawa, K., Shiota, N., Inui, H., and Ohkawa, H. 2005. Transgenic rice containing human CYP2B6 detoxifies various classes of herbicides. J. Agric. Food Chem. 53:34613467.CrossRefGoogle ScholarPubMed
Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., and Kumashiro, T. 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens . Nat. Biotechnol. 14:745750.Google Scholar
James, C. 2007. Global Status of Commercialized Biotech/GM Crops: 2007. http://www.isaaa.org/resources/publications/briefs/. Accessed: March 19, 2008.Google Scholar
Kirkland, K. J. 1995. HOE 075032 for wild mustard (Sinapis arvensis) control in canola (Brassica rapa). Weed Sci. 9:541545.Google Scholar
Kriete, G., Niehaus, K., Perlick, A. M., Pühler, A., and Broer, I. 1996. Male sterility in transgenic tobacco plants induced by tapetum-specific deacetylation of the externally applied non-toxic N-acetyl-L-phosphinothricin. Plant J. 9:809818.Google Scholar
Lebrun, M., Leroux, B., and Sailland, A., inventors. 1996 Apr 23. 4 23. Rhone-Poulenc Agrochimie, assignee Chimeric gene for the transformation of plants. U.S. patent 5,510,471.Google Scholar
Lee, H. J., Duke, M. V., and Duke, S. O. 1993. Cellular localization of protoporphyrinogen-oxidizing activities of etiolated barley (Hordeum vulgare L.) leaves. Plant Physiol. 02:881889.Google Scholar
Lee, K. Y., Townsend, J., Tepperman, J., Black, M., Chui, C. F., Mazur, B., Dunsmuir, P., and Bedbrook, J. 1988. The molecular-basis of sulfonylurea resistance in tobacco. EMBO (Eur. Mol. Biol. Organ.) J. 7:12411248.Google Scholar
Li, X. and Nicholl, D. 2005. Development of PPO inhibitor-resistant cultures and crops. Pest Manag. Sci. 61:277285.Google Scholar
Li, X., Volrath, S. L., Nicholl, D. B. G., Chilcott, C. E., Johnson, M. A., Ward, E. R., and Law, M. D. 2003. Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. Plant Physiol. 133:736747.Google Scholar
Mallory-Smith, C. A. and Zapiola, M. 2008. Gene flow from glyphosate-resistant crops. Pest Manag. Sci. 64:428440.Google Scholar
Matringe, M., Sailland, A., Pelissier, B., Roland, A., and Zind, O. 2005. p-Hydroxyphenylpyruvate dioxygenase inhibitor-resistant plants. Pest Manag. Sci. 61:269276.Google Scholar
McCourt, J. A., Pang, S. S., King-Scott, J., Guddat, L. W., and Duggleby, R. G. 2006. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc. Natl. Acad. Sci. U. S. A. 103:568573.Google Scholar
Ness, J. E., Kim, S., Gottman, A., Pak, R., Krebber, A., Borchert, T. V., Govindarajan, S., Mundorff, E. C., and Minshull, J. 2002. Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently. Nat. Biotechnol. 20:12511255.Google Scholar
Odell, J. T., Nagy, F., and Chua, N-H. 1985. Identification of DNA sequences required for activity of cauliflower mosaic 35S promoter. Nature (Lond.) 313:810812.Google Scholar
Ohkawa, H., Tsujii, H., and Ohkawa, Y. 1999. The use of cytochrome P450 genes to introduce herbicide tolerance in crops: a review. Pestic. Sci. 55:867874.3.0.CO;2-S>CrossRefGoogle Scholar
Owen, M. D. K. 2001. World maize/soybean and herbicide resistance. Pages 101163. in Powles, S. B. and Shaner, D. L. Herbicide Resistance and World Grains. Boca Raton, FL CRC.Google Scholar
Padgette, S. R., Kolac, K. H., Delannay, X., et al. 1995. Development, identification, and characterization of glyphosate-tolerant soybean line. Crop Sci. 35:14511461.Google Scholar
Penner, D. and Simarmata, M., inventors. 2007 Aug 2. 8 2. no assignee Methods for breeding glyphosate resistant plants and compositions thereof. U.S. patent application 20070180574 A1, 1–35.Google Scholar
Perez-Jones, A., Park, K., Polge, N., Colquhoun, J., and Mallory-Smith, C. A. 2007. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum . Planta. 226:395404.Google Scholar
Powles, S. B. 2008. Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag. Sci. 64:360365.Google Scholar
Sen Gupta, A., Heinen, J. L., Holaday, A. S., Burke, J. J., and Allen, R. D. 1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplast Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. U. S. A. 90:16291633.Google Scholar
Service, R. F. 2007. A growing threat down on the farm. Science. 316:11141117.Google Scholar
Shah, D. M., Rogers, S. G., Horsch, R. B., and Fraley, R. T., inventors. 1990 Jul 10. 7 10. Monsanto Company, assignee Glyphosate-resistant plants. U.S. patent 4,940,835.Google Scholar
Shaner, D. L., Stidham, M., and Singh, B. 2007. Imidazolinone Herbicides. Pages 8292. in Krämer, W. and Schirmer, U. Modern Crop Protection Compounds. Volume 1. Weinheim, Germany Wiley-VCH Verlag.Google Scholar
Siehl, D. L., Castle, L. A., Groton, R., and Keenan, R. J. 2007. The molecular basis of glyphosate resistance by an optimized microbial acetyltransferase. J. Biol. Chem. 282:11461155.Google Scholar
Simarmata, M., Bughrara, S., and Penner, D. 2005. Inheritance of glyphosate resistance in rigid ryegrass (Lolium rigidum) from California. Weed Sci. 53:615619.Google Scholar
Siminszky, B., Corbin, F. T., Ward, E. R., Fleischmann, T. J., and Dewey, R. E. 1999. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances metabolism of phenylurea herbicides. Proc. Natl. Acad. Sci. U. S. A. 96:17501755.CrossRefGoogle ScholarPubMed
Simpson, D. M., Wright, T. R., Chambers, R. S., et al. 2008. Introduction to Dow AgroSciences herbicide tolerance traits. Abstr. Weed Sci. Soc. Am. 48:115. [Abstract].Google Scholar
Skipsey, M., Cummins, I., Andrews, C. J., Jepson, I., and Edwards, R. 2005. Manipulation of plant tolerance to herbicides through coordinated metabolic engineering of a detoxifying glutathione transferase and thiol cosubstrate. Plant Biotechnol. J. 3:409420.Google Scholar
Somers, D. A. 1996. Aryloxyphenoxypropionate- and cyclohexanedione-resistant crops. Pages 175188. in Duke, S. O. Herbicide-Resistant Crops: Agricultural, Environmental, Economic, Regulatory, and Technical Aspects. Boca Raton, FL CRC and Lewis.Google Scholar
Spencer, M., Mumm, R., and Gwyn, J., inventors. 2000 Mar 21. 3 21. DeKalb Genetics Corporation, assignee Glyphosate resistant maize lines. U.S. patent 6040497.Google Scholar
Stalker, D. M., Kiser, J. A., Baldwin, G., Coulombe, B., and Houck, C. M. 1996. Cotton weed control using the BXN system. Pages 93106. in Duke, S. O. Herbicide-Resistant Crops: Agricultural, Environmental, Economic, Regulatory, and Technical Aspects. Boca Raton, FL CRC and Lewis.Google Scholar
Streber, W. R., Kutschka, U., Thomas, F., and Pohlenz, H-D. 1994. Expression of a bacterial gene in transgenic plants confers resistance to the herbicide phenmedipham. Plant Mol. Biol. 25:977987.Google Scholar
Surov, T., Aviv, D., Aly, R., Joel, D. M., Goldman-Guez, T., and Gressel, J. 1998. Generation of transgenic asulam-resistant potatoes to facilitate eradications of parasitic broomrapes (Orobanche spp.) with the su gene as the selectable marker. Theor. Appl. Genet. 96:132137.Google Scholar
Tan, S. Y., Evans, R. R., Dahmer, M. L., Singh, B. K., and Shaner, D. L. 2005. Imidazolinone-tolerant crops: history, current status and future. Pest Manag. Sci. 61:246257.Google Scholar
Thill, D. C. and Lemerle, D. 2001. World wheat and herbicide resistance. Pages 6170. in Powles, S. B. and Shaner, D. L. Herbicide Resistance and World Grains. New York CRC.Google Scholar
Vande Berg, B. J., Hammer, P. E., Chun, B. L., et al. 2008. Characterization and plant expression of a glyphosate-tolerant enolpyruvylshikimate phosphate synthase. Pest Manag. Sci. 64:340345.Google Scholar
Vasil, I. K. 1996. Phosphinothricin-resistant crops. Pages 8591. in Duke, S. O. Herbicide-Resistant Crops: Agricultural, Environmental, Economic, Regulatory, and Technical Aspects. Boca Raton, FL CRC and Lewis.Google Scholar
Via-Ajub, M. M., Neve, P. B., and Powles, S. B. 2007. Resistance cost of a cytochrome P450 herbicide-metabolism but not an ACCase target site mutation in multiple resistant Lolium rigidum populations. New Phytol. 167:787796.Google Scholar
Warick, S. I., Légère, A., Simard, M-J., and James, T. 2008. Do escaped genes persist in nature. The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol. Ecol. 17:13871395.Google Scholar
Watrud, L. S., Lee, E. H., Fairbrother, A., Burdick, C., Reichman, J. R., Bollman, M., Storm, M., King, G., and Van de Water, P. K. 2004. Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc. Natl. Acad. Sci. U. S. A. 101:1453314538.Google Scholar
Williams, M. E., Sowinski, S. G., Dam, T., and Li, B-L. 2006. Map-based cloning of the nsf1 gene of maize. in. 48th Maize Genetics Conference Abstracts. Maize Genetics and Genomics Database. [Abstract] 49.Google Scholar
Wright, T. R., Lira, J. M., Merlo, D. J., and Hopkins, N. 2005 Nov 17. inventors; Dow Agrosciences assignee Novel herbicide resistance genes. World Intellectual Property Organization patent WO/2005/107437.Google Scholar
Wright, T. R., Lira, J. M., Walsh, T. A., Merlo, D. J., Jayakumar, P. S., and Lin, G. 2007 Oct 5. inventors; Dow Agrosciences, assignee. Novel herbicide resistance genes World Intellectual Property Organization patent WO/2007/053482.Google Scholar
[WSSA] Weed Science Society of America 2007. Herbicide Handbook. 9th ed. Lawrence, KS WSSA.Google Scholar
Zhou, M., Xu, H., Wei, X., Ye, Z., Wei, L., Gong, W., Wang, Y., and Zhu, Z. 2006. Identification of a glyphosate-resistant mutant of rice 5-enolpyruvylshikimate 3-phosate synthase using a directed evolution strategy. Plant Physiol. 140:184195.Google Scholar