Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T00:20:18.019Z Has data issue: false hasContentIssue false

Bioassay and Anatomical Study of Bas 517 Using Etiolated Crop Seedlings

Published online by Cambridge University Press:  12 June 2017

Hwei-Yiing Li
Affiliation:
Dep. Plant Pathol., Physiol., Weed Sci., Virginia Polytech. Inst. State Univ., Blacksburg, VA 24061
Chester L. Foy
Affiliation:
Dep. Plant Pathol., Physiol., Weed Sci., Virginia Polytech. Inst. State Univ., Blacksburg, VA 24061

Abstract

Laboratory experiments were conducted to determine the selectivity and inhibitory activity of BAS 517 using whole seedlings or root tips of corn and soybean. Effects of BAS 517 on the morphology of corn root tips were examined as well. Etiolated corn seedlings showed high sensitivity to BAS 517; soybean seedlings were not affected. Growth inhibition of corn varied with concentrations of BAS 517 and incubation time. Radicles of corn were more sensitive than mesocotyls and coleoptiles. Root meristems were the first to show symptoms (reddening tissue followed by cessation of root growth). Results using root tips were similar to those using whole seedlings. However, root tips appeared to be more sensitive than whole seedlings. Concentrations of 0.1 and 10 μM of BAS 517 caused severe vacuolization of cells in the 0.2-cm root tip of corn. A pattern of decreasing injury from epidermal cells toward the centers of roots was observed.

Type
Special Topics
Copyright
Copyright © 1993 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Asare-Boamah, N. K. and Fletcher, R. A. 1983. Physiological and cytological effects of BAS 517 OH on corn (Zea mays) seedlings. Weed Sci. 31:4955.CrossRefGoogle Scholar
2. Chandrasena, J.P.N.R. and Sagar, G. R. 1987. Effect of fluazifop-butyl on the chlorophyll content, fluorescence and chloroplast ultrastructure of Elymus repens (L.) Gould. leaves. Weed Res. 27:103112.Google Scholar
3. Cho, H. Y., Widholm, J. M., and Slife, F. W. 1986. Effects of haloxyfop on corn (Zea mays) and soybean (Glycine max) cell suspension cultures. Weed Sci. 34:496501.Google Scholar
4. Gerwick, B. C., Jackson, L. A., Handly, J., Gray, N. R., and Russell, J. W. 1988. Preemergence and postemergence activities of the (R) and (S) enantiomers of haloxyfop. Weed Sci. 36:453456.Google Scholar
5. Gronwald, J. W. 1986. Effect of haloxyfop and haloxyfop-methyl on elongation and respiration of corn (Zea mays) and soybean (Glycine max) roots. Weed Sci. 34:196202.Google Scholar
6. Gronwald, J. W. 1991. Lipid biosynthesis inhibitors. Weed Sci. 39:435449.Google Scholar
7. Hoppe, H. H. 1980. Einfluss von Diclofop-methyl auf Wachstum und Entwicklung der Keimlinge von Zea mays L. Weed Res. 20:371376.Google Scholar
8. Hoppe, H. H. 1980. Veranderungen der Membranpermeabilitat, des Kohlenhydratgehaltes, des Lipidgehaltes und der Lipidzusammensetzung in Keimwurzelspitzen von Zea mays L. nach Behandlung mit Diclofop-methyl. Z. Pflanzenphysiol. 100:415426.Google Scholar
9. Hoppe, H. H. 1981. Einfluss von Diclofop-methyl auf die Protein-, Nukleinsaure- und Lipidbiosynthese der Keimwurzelspitzen von Zea mays L. Z. Pflanzenphysiol. 102:189197.Google Scholar
10. Hoppe, H. H. and Zacher, H. 1982. Hemmung der Fettsaurebiosynthese durch Diclofop-methyl in Keimwurzelspitzen von Zea mays . Z. Pflanzenphysiol. 106:287298.Google Scholar
11. Hosaka, H., Inaba, M., Satoh, A., and Ishikawa, H. 1984. Morphological and histological effects of sethoxydim on corn (Zea mays) seedlings. Weed Sci. 32:711721.Google Scholar
12. Hosaka, H. and (Kubota) Takagi, M. 1987. Physiological responses to sethoxydim in tissues of corn (Zea mays) and pea (Pisum sativum). Weed Sci. 35:604611.Google Scholar
13. Hosaka, H. and (Kubota) Takagi, M. 1987. Biochemical effects of sethoxydim in excised root tips of corn (Zea mays). Weed Sci. 35:612618.Google Scholar
14. Hosaka, H. and (Kubota) Takagi, M. 1987. Selectivity mechanisms of sethoxydim absorption into tissues of corn (Zea mays) and pea (Pisum sativum). Weed Sci. 35:619622.Google Scholar
15. Huber, R., Hamm, R., Ohnsorge, U., and Turk, W. 1988. The metabolism of cycloxydim in soybeans. Proc. Brighton Crop Prot. Conf.—Pests and Diseases 1:335341.Google Scholar
16. Jain, R. and Vanden Born, R. H. 1989. Morphological and histological effects of three grass herbicides on developing wild oat (Avena fatua) stems. Weed Sci. 37:575584.Google Scholar
17. Kim, J. C. and Bendixen, L. E. 1987. Effects of haloxyfop and CGA-82725 on cell cycle and cell division of oat (Avena sativa) root tips. Weed Sci. 35:769774.Google Scholar
18. Morrison, I. N., Owino, M. G., and Stobbe, E. H. 1981. Effects of diclofop on growth, mitotic index, and structure of wheat (Triticum aestivum) and wild oat (Avena fatua) adventitious roots. Weed Sci. 29:426432.CrossRefGoogle Scholar
19. Ruizzo, M. A. and Gorski, S. F. 1988. Inhibition of chloroplast-mediated reactions by quizalofop herbicide. Weed Sci. 36:713718.Google Scholar
20. Swisher, B. A. and Corbin, F. T. 1982. Behavior of BAS 9052 OH in soybean (Glycine max) and johnsongrass (Sorghum halepense) plant and cell cultures. Weed Sci. 30:640650.Google Scholar
21. Vaughan, S. F. and Merkle, M. G. 1989. Histological and cytological effects of haloxyfop on sorghum (Sorghum bicolor) and unicorn-plant (Proboscidea louisianica) root meristems. Weed Sci. 37:503511.Google Scholar