Published online by Cambridge University Press: 12 June 2017
Genetic variability for loci governing enzyme/morphological variants and for herbicide response was determined in 10 populations of the slender wild oat (Avena barbata Pott. ex Link ♯ AVEBA), six populations of wild oat (Avena fatua L. ♯ AVEFA), and three populations of godetia (Clarkia williamsonii Lewis & Lewis). The enzyme loci were identified by starch gel electrophoresis and included peroxidase, 6-phosphogluconate dehydrogenase, esterase, and leucine aminopeptidase for the slender wild oat; peroxidase, esterase, leucine aminopeptidase, and malate dehydrogenase for the wild oat; and esterase, phosphoglucoisomerase, leucine aminopeptidase, acid phosphatase, and glutamate oxaloacetate transaminase for godetia. Morphological loci included lemma and leaf sheath hairiness for the oats. For both the enzymatic and morphological loci, levels of genetic variation for each population were quantified by a polymorphic index. The herbicide barban (4-chloro-2-butynyl 3-chlorophenylcarbamate) was used on the wild oats; bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) was used on godetia. Genetic variation for herbicide response was based on genetic variances calculated from phytotoxicity scores. Populations were ranked from highest to lowest for the polymorphic indices and the genetic variances. Concordance between the rankings was tested by rank correlation. Statistically significant relationships were found between the enzyme/morphological characters and herbicide response in the slender wild oat and the wild oat. For some species, the level of genetic variation for response to herbicides appears to be associated with genetic variation for enzymatic and morphological loci.