Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T20:26:18.610Z Has data issue: false hasContentIssue false

On the Identity of the Weedy Bittercresses (Cardamine : Brassicaceae) in United States Nurseries: Evidence from Molecules and Morphology

Published online by Cambridge University Press:  20 January 2017

Angela R. Post*
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh NC 27695
Regina Ali
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh NC 27695
Alexander Krings
Affiliation:
Department of Plant Biology, North Carolina State University, Raleigh NC 27695
Jenny Xiang
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh NC 27695 Department of Plant Biology, North Carolina State University, Raleigh NC 27695
Brian R. Sosinski
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh NC 27695
Joseph C. Neal
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh NC 27695
*
Corresponding author's E-mail: [email protected]

Abstract

Bittercress (Brassicaceae) is one of the most prolific and costly weeds of the container nursery industry. Bittercress accessions from container nurseries throughout the major production zones in the United States were examined and compared with herbarium specimens. The identity of these weedy bittercress species were further explored using sequences of the nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) region and the nrDNA region for the COP1-interacting protein 7 (CIP7). Four species of bittercress were detected in the nursery industry of the United States, including New Zealand bittercress, hairy bittercress, flexuous bittercress, and little bittercress. The taxon referred to here as Cardamine flexuosa With. (flexuous bittercress) likely contains two genotypes previously reported as European C. flexuosa and Asian C. flexuosa. Phylogenetic relationships between the four species we examined, particularly in relationship to flexuous bittercress, were not fully resolved by the molecular evidence generated for this study. New Zealand bittercress is nonnative and does not appear in current keys to the species for the United States. Flexuous bittercress is also an alien species, which appears in some U.S. keys but not in all. To aid nurserymen and botanists in identification of these four closely related bittercress species, a key was developed and is accompanied by detailed descriptions and illustrations.

Type
Special Topics
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061.

References

Literature Cited

Al-Shehbaz, I. A. 1988. The genera of Arabideae (Cruciferae; Brassicaceae) in the southeastern United States. J. Arnold Arbor. 69:85166.Google Scholar
Al-Shehbaz, I. A., Beilstein, M. A., and Kellog, E. A. 2006. Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst. Evol. 259:89120.Google Scholar
Altland, J. E., Gilliam, C. H., and Olive, J. W. 1998. Postemergence control of bittercress. Pages 380383 in Warren, S., ed. Proceedings of the 43rd SNA Research Conference. Atlanta, GA Southern Nursery Association.Google Scholar
Altland, J. E., Gilliam, C. H., and Olive, J. W. 1999. Bittercress size influences postemergence control from gallery. Pages 378380 in McDaniels, G., ed. Proceedings of the 44th SNA Research Conference. Atlanta, GA Southern Nursery Association.Google Scholar
Appel, O. and Al-Shehbaz, I. A. 2003. Cruciferae. Pages 75174 in Kubitzki, K. and Bayer, C., eds. The Families and Genera of Vascular Plants. Berlin Springer.Google Scholar
Bachman, G. and Whitwell, T. 1995. Hairy bittercress seed production, dispersal and control. Pages 288290 in James, B. L., ed. Proceedings of the 40th SNA Research Conference. Atlanta, GA Southern Nursery Association.Google Scholar
Bailey, C. D. and Doyle, J. J. 1999. Potential phylogenetic utility of the low-copy nuclear gene PISTILLATA in dicotyledonous plants: comparison to nrDNA ITS and trnL intron in Sphaerocardamum and other Brassicaceae. Mol. Phylogenet. Evol. 13(1):2030.Google Scholar
Bleeker, W., Franzke, A., Pollman, K., Brown, A. H. D., and Hurka, H. 2002. Phylogeny and biogeography of southern hemisphere high-mountain Cardamine species (Brassicaceae). Aust. Syst. Bot. 15:575581.Google Scholar
Bond, W. and Turner, R. 2006. The Biology and Non-Chemical Control of Hairy Bittercress. http://www.organicweeds.org.uk. Accessed: January 12, 2007.Google Scholar
Britton, L. and Brown, A. 1913. Illustrated Flora of the Northern United States, Canada and the British Possessions. 2nd ed. Volume 2. New York Charles Scribner's Sons. Pp. 183.Google Scholar
Detling, L. E. 1936. The pacific coast species of Cardamine . Am. J. Bot. 24:7076.Google Scholar
Eelen, H. and Bulcke, R. 1997. Identification of bittercress species (Cardamine L.) in ornamental nurseries and their response to isoxaben. Page 27 in Proceedings of the 37th Weed Science Society of America Conference. Champaign, IL WSSA. [Abstract].Google Scholar
Fain, G. B., Altland, J. E., and Rinehart, T. A. 2005. Molecular and morphological characterization of Cardamine species. Pages 454456 in James, B. L., ed. Proceedings of the 50th SNA Research Conference. Atlanta, GA Southern Nursery Association.Google Scholar
Fawcett, W. and Rendle, A. B. 1914. Flora of Jamaica. Volume 3. London British Museum of Natural History.Google Scholar
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39:783791.Google Scholar
Franzke, A. and Hurka, H. 2000. Molecular systematics and biogeography of the Cardamine pratensis complex (Brassicaceae). Plant Syst. Evol. 224:213234.Google Scholar
Franzke, A. and Mummenhoff, K. 1999. Recent hybrid speciation in Cardamine (Brassicaceae) conversion of nuclear ribosomal ITS sequences in statu nascendi. Theor. Appl. Genet. 98:225240.Google Scholar
Franzke, A., Pollman, K., Bleeker, W., Kohrt, R., and Hurka, H. 1998. Molecular systematics of Cardamine and allied genera (Brassicaceae): ITS and non-coding chloroplast DNA. Folia GeoBot. 33:225240.Google Scholar
Hickman, J. C., ed. 1993. The Jepson Manual: Higher Plants of California. Berkeley, CA University of California Press.Google Scholar
Hitchcock, C. L., Cronquist, A., Ownbey, M., and Thompson, J. W. 1964. Vascular Plants of the Pacific Northwest, Part 2: Salicaceae to Saxifragaceae. Seattle University of Washington Press.Google Scholar
Holmgren, P. K., Holmgren, N. H., and Barnett, L. C. 1990. Index Herbariorum I: The Herbaria of the World. 8th ed. New York Botanical Garden.Google Scholar
Huelsenbeck, J. P. and Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics (Oxf.). 17:754755.Google Scholar
Hughes, C. E., Eastwood, R. J., and Bailey, C. D. 2006. From famine to feast? Selecting nuclear DNA sequence loci for plant species level phylogeny reconstruction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361:211225.Google Scholar
Janchen, E. 1942. Das system der cruciferen. Oesterr. Bot. Z. 91:128.Google Scholar
Kimata, M. 1983. Comparative studies on the reproductive systems of Cardamine flexuosa, Cardamine impatiens, Cardamine scutata, and Cardamine lyrata (Cruciferae). J. Plant Res. 96:299312.Google Scholar
Koch, M., Al-Shehbaz, I. A., and Mummenhoff, K. 2003. Molecular systematics, evolution, and population biology in the mustard family (Brassicaceae). Ann. Mo. Bot. Gard. 90:151171.Google Scholar
Koch, M., Haubold, B., and Mitchell-Olds, T. 2001. Molecular systematics of the Brassicaceae: evidence form coding plastidic matK and nuclear Chs sequences. Am. J. Bot. 88:534544.Google Scholar
Krings, A., Thomas, D. T., and Xiang, Q. 2008. On the generic circumscription of Gonolobus (Apocynaceae, Asclepiadoideae): evidence from molecules and morphology. Syst. Bot. 33(2):403415.Google Scholar
Larkin, M. A., Blackshields, G., Brown, N. P., et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics. 23:29472948.Google Scholar
Liede-Schumann, S., Rapini, A., Goyder, D. J., and Chase, M. W. 2005. Phylogenetics of the New World subtribes of Asclepiadeae (Apocynaceae–Asclepiadoideae): Metastelmatinae, Oxypetalinae, and Gonolobinae. Syst. Bot. 30:184195.Google Scholar
Lihová, J., Marhold, K., and Neuffer, B. 2000. Taxonomy of Cardamine amara (Cruciferae) in the Iberian Peninsula. Taxon. 49:47763.Google Scholar
Lihová, J. and Marhold, K. 2003. Taxonomy and distribution of the Cardamine pratensis group (Brassicaceae) in Slovenia. Phyton (Horn). 43:241261.Google Scholar
Lihová, J., Marhold, K., Kudoh, H., and Koch, M. 2006. Worldwide phylogeny and biogeography of Cardamine flexuosa (Brassicaceae) and its relatives. Am. J. Bot. 93(8):12061221.Google Scholar
Linnaeus, C. 1753. Species Plantarum, Exhibentes Plantas Rite Cognitas, ad Genera Relatas, cum Differentiis Specificis, Nominibus Trivialibus, Synonymis Selectis, Locis Natalibus, Secundum Systema Sexuale Digestas. Stockholm Impensis Laurentii Salvii. Pp. 653.Google Scholar
Marhold, K. 1994. Taxonomy of the genus Cardamine L. (Cruciferae) in the Carpathians and Pannonia, I: Cardamine pratensis group. Folia Geobot. Phytotax. (Praha.). 29:335–274.Google Scholar
Marhold, K. 1995a. Taxonomy of the genus Cardamine L. (Cruciferae) in the Carpathians and Pannonia, II: Cardamine amara L. Folia Geobot. Phytotax. (Praha.). 30:6380.Google Scholar
Marhold, K. 1995b. Taxonomy of the genus Cardamine L. (Cruciferae) in the Carpathians and Pannonia, III: Folia Geobot. Phytotax. (Praha.). 30:397434.Google Scholar
Marhold, K. 1996. Typification of the Linnaean names of the genus Cardamine (Cruciferae). Bot. J. Linn. Soc. 121(2):111121.Google Scholar
Marhold, K., Huthmann, M., and Hurka, H. 2002a. Evolutionary history of the polyploidy complex of Cardamine amara (Brassicaceae): Isozyme evidence. Plant Syst. Evol. 233:1528.Google Scholar
Marhold, K., Lihová, J., Perný, M., and Bleeker, W. 2004. Comparative ITS and AFLP analysis of diploid Cardamine (Brassicaceae) taxa from closely related polyploid complexes. Ann. Bot. (Lond.). 93:507520.Google Scholar
Marhold, K., Lihová, J., Perný, M., Grupe, R., and Nueffer, B. 2002b. Natural hybridization in Cardamine (Brassicaceae) in the Pyrenees: evidence from morphological and molecular data. Bot. J. Linn. Soc. 139:275294.Google Scholar
Mathers, H. M. 1996. Nursery Industry News. Vancouver, Canada British Columbia Ministry of Agriculture, Food, and Fisheries. March. Pp. 18.Google Scholar
Neuffer, B. and Jancke, P. 1997. RApd analysis of hybridization events in Cardamine (Brassicaceae). Folia. GeoBot. 32:5767.Google Scholar
Posada, D. 2005. Modeltest 3.7. Vigo, Spain Universidade de Vigo.Google Scholar
Posada, D. and Buckley, T. R. 2004. Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53:793808.Google Scholar
Pritchard, G. G. 1957. Experimental taxonomic studies on species of Cardamine Linn. In New Zealand. Trans. R. Soc. New Zeal. 85(1):7589.Google Scholar
Radford, A. E., Ahles, H. E., and Bell, C. R. 1968. Manual of the Vascular Flora of the Carolinas. Chapel Hill, NC University of North Carolina Press.Google Scholar
Rambaut, A. and Drummond, A. 2004. Tracer, MCMC Trace Analysis Tool, version 1.1. Oxford, UK University of Oxford.Google Scholar
Rollins, R. C. 1993. The Cruciferae of Continental North America. Palo Alto, CA Stanford University Press.Google Scholar
Salisbury, E. 1962. The biology of garden weeds, part I. J. R. Hortic. Soc. 87:338350 390–404.Google Scholar
Schranz, M. E., Windsor, A. J., Song, B., Lawton-Rauh, A., and Mitchell-Olds, T. 2007. Comparative genetic mapping in Boechera stricta, a close relative of Arabidopsis . Plant Physiol. (Rockv.). 144:286298.Google Scholar
Schulz, O. E. 1903. Monographie der gattung Cardamine . Bot. Jahrb. Syst. Pflanzengesch. Pflanzengeogr. 32:280623.Google Scholar
Sjostedt, B. 1975. Revision of the genus Cardamine L. in South and Central America. Bot. Not. 128:819.Google Scholar
Smith, R., Whitwell, T., and Legnani, G. 1997. Bittercress control in gravel beds with preemergence herbicides. Pages 8285 in James, B. L., ed. Proceedings of the 42nd SNA Research Conference. Atlanta, GA Southern Nursery Association.Google Scholar
Sweeney, P. W. and Price, R. A. 2000. Polyphyly of the genus Dentaria (Brassicaceae): evidence from trnL intron and ndhF sequence data. Syst. Bot. 25:468478.Google Scholar
Sweeney, P. W. and Price, R. A. 2001. A multivariate morphological analysis of the Cardamine concatenata alliance (Brassicaceae). Brittonia. 53(1):8295.Google Scholar
Swofford, D. L. 2002. PAUP* 4.0b10. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland MA Sinauer.Google Scholar
Urbanska, K. M., Hurka, H., Landolt, E., Neuffer, B., and Mummenhoff, K. 1997. Hybridization and evolution in Cardamine (Brassicaceae) at Urnerboden, central Switzerland—bisystematic and molecular evidence. Plant Syst. Evol. 204:233256.Google Scholar
[USDA NRCS] U.S. Department of Agricultural, Natural Resources Conservation Service. 2008. The PLANTS Database. http://plants.usda.gov. Accessed: July 31, 2008.Google Scholar
[USDA ERS] U.S. Department of Agricultural, Economic Research Service. 2007. Floriculture and Nursery Crops Yearbook. http://www.ers.usda.gov/publications/flo/2007/09Sep/FLO2007.pdf. Accessed: May 5, 2008.Google Scholar
Weakley, A. S. 2007. Flora of the Southern and Mid-Atlantic States. http://www.herbarium.unc.edu/flora.htm. Accessed: July 15, 2007.Google Scholar
White, T. J., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315322 in Innis, M. A., Gelfand, D. H., Shinsky, J. J., and White, T. J., eds. PCR Protocols: A Guide to Methods and Applications. San Diego, CA Academic.Google Scholar
Yamamoto, Y. Y., Matsui, M., Lang, L. H., and Deng, X. W. 1998. Role of COP1 interactive protein in mediating light regulated gene expression in Arabidopsis . Plant Cell. 10(7):1083–94.Google Scholar
Zhou, T. Y., Lu, L. L., Yang, G., and Al-Shehbaz, I. A. 2001. Brassicaceae (Cruciferae). Pages 1193 in Wu, Z. Y. and Raven, P. H., eds. Flora of China. Vol. 8. St. Louis MO Missouri Botanical Garden.Google Scholar