Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T01:30:47.042Z Has data issue: false hasContentIssue false

Fate of acifluorfen and lactofen in common waterhemp (Amaranthus rudis) resistant to protoporphyrinogen oxidase–inhibiting herbicides

Published online by Cambridge University Press:  20 January 2017

Douglas E. Shoup
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506

Abstract

Studies were conducted to determine acifluorfen and lactofen absorption, translocation, and metabolism in protox-inhibiting herbicide-susceptible and -resistant common waterhemp. Acifluorfen and lactofen absorption was similar in both biotypes. Herbicide absorption was 12% in both susceptible and resistant common waterhemp 6 h after treatment (HAT). Absorption increased to 32 and 42% in susceptible and resistant plants, respectively, at 72 HAT. Translocation was similar in both biotypes for both herbicides. Herbicide translocation out of the treated leaf ranged between 5 and 15%. In a separate study, resistant common waterhemp plants were treated with acifluorfen or lactofen, alone or with tridiphane. Acifluorfen or lactofen injury to resistant common waterhemp was not altered with the addition of tridiphane. Treatments of 14C-acifluorfen or -lactofen on susceptible and resistant common waterhemp resulted in similar lactofen metabolism in both biotypes, but acifluorfen was not metabolized in either biotype within 24 HAT. This data indicate that differences in herbicide absorption, translocation, or metabolism are not the mechanism of common waterhemp resistance to protox-inhibiting herbicides.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aizawa, H. and Brown, H. M. 1999. Metabolism and degradation of porphyrin biosynthesis inhibitor herbicides. Pages 347381 in Böger, P. and Wakabayashi, K. eds. Peroxidizing Herbicides. Berlin: Springer-Verlag.Google Scholar
Anderson, D. D., Roeth, F. W., and Martin, A. R. 1996. Occurrence and control of triazine-resistant common waterhemp (Amaranthus rudis) in field corn (Zea mays). Weed Technol 10:570575.Google Scholar
Becerril, J. M. and Duke, S. O. 1989. Protoporphyrin IX content correlates with activity of photobleaching herbicides. Plant Physiol 90:11751181.Google Scholar
Bensch, C. N., Horak, M. J., and Peterson, D. E. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci 51:3743.Google Scholar
Camadro, J. M., Matringe, M., Scalla, R., and Labbe, P. 1991. Kinetic studies on protoporphyrinogen oxidase inhibition by diphenyl ether herbicides. Biochem. J 277:1721.Google Scholar
Colby, S. R. 1967. Calculating synergistic and antagonistic responses of herbicide combinations. Weed Sci 15:2022.Google Scholar
Cranston, H. J., Kern, A. J., Hackett, J. L., Miller, E. K., Maxwell, B. D., and Dyer, W. E. 2001. Dicamba resistance in kochia. Weed Sci 49:164170.Google Scholar
Dayan, F. E., Weete, J. D., Duke, S. O., and Hancock, H. G. 1997. Soybean (Glycine max) cultivar differences in response to sulfentrazone. Weed Sci 45:634641.Google Scholar
Devine, M. D., Duke, S. O., and Fedtke, C. 1993. Foliar absorption of herbicides. Pages 2952 in Huber, L. A. and Bernhaut, K. eds. Physiology of Herbicide Action. Englewood Cliffs, NJ: P T R Prentice-Hall.Google Scholar
Duke, S. O., Lee, H. J., and Duke, M. V. et al. 1997. Mechanisms of resistance to protoporphyrinogen oxidase-inhibiting herbicides. Pages 155160 in De Prado, R., Jorrín, J., and García-Torres, L. eds. Weed and Crop Resistance to Herbicides. Norwell, MA: Kluwer Academic.Google Scholar
Ezra, G., Dekker, J. H., and Stephenson, G. R. 1985. Tridiphane as a synergist for herbicides in corn (Zea mays) and proso millet (Panicum miliaceum). Weed Sci 33:287290.Google Scholar
Frear, D. S. and Swanson, H. R. 1973. Metabolism of substituted diphenyl ether herbicides in plants. I. Enzymatic cleavage of fluorodifen in peas (Pisum sativum L.). Pestic. Biochem. Physiol 3:473482.Google Scholar
Frear, D. S., Swanson, H. R., and Mansager, E. R. 1983. Acifluorfen metabolism in soybean: diphenyl ether bond cleavage and the formation of homoglutathione, cysteine, and glucose conjugates. Pestic. Biochem. Physiol 20:299310.Google Scholar
Fuerst, E. P., Nakatani, H. Y., Dodge, A. D., Penner, D., and Arntzen, C. J. 1985. Paraquat resistance in Conyza . Plant Physiol 77:984989.Google Scholar
Gaul, S. O., Stephenson, G. R., and Solomon, K. R. 1995. Phytotoxic interaction of tridiphane and metribuzin in metribuzin sensitive and tolerant soybean (Glycine max) and tomato (Lycopersicon esculentum). Weed Sci 43:358364.Google Scholar
Hartzler, R. G., Buhler, D. D., and Stoltenberg, D. E. 1999. Emergence characteristics of four annual weed species. Weed Sci 47:578584.Google Scholar
Higgins, J. M., Whitwell, T., Corbin, F. T., Carter, G. E. Jr., and Hill, H. S. Jr. 1988. Absorption, translocation, and metabolism of acifluorfen and lactofen in pitted morningglory (Ipomoea lacunosa) and ivyleaf morningglory (Ipomoea hederacea). Weed Sci 36:141145.Google Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci 48:347355.Google Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol 9:192195.Google Scholar
Jacobs, J. M. and Jacobs, N. J. 1993. Porphyrin accumulation and export by isolated barley (Hordeum vulgare) plastids. Plant Physiol 101:11811187.Google Scholar
Jacobs, J. M., Jacobs, N. J., Sherman, T. D., and Duke, S. O. 1991. Effect of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporphyrin in organella and plasma membrane enriched fractions of barley. Plant Physiol 97:197203.Google Scholar
Lee, H. J., Duke, M. V., and Duke, S. O. 1993. Cellular localization of protoporphyrinogen-oxidizing activities of etiolated barley (Hordeum vulgare) leaves. Plant Physiol 102:881889.Google Scholar
Lehnen, L. P., Sherman, T. D., Becerril, J. M., and Duke, S. O. 1990. Tissue and cellular localization of acifluorfen-induced porphyrins in cucumber cotyledons. Pestic. Biochem. Physiol 37:239248.Google Scholar
Matringe, M., Camadro, J. M., Block, M. A., Joyard, J., Scalla, R., Labbe, P., and Douce, R. 1992. Localization within the chloroplast of protoporphyrinogen oxidase the target enzyme for diphenyl ether-like herbicides. J. Biol. Chem 267:45464651.Google Scholar
Matringe, M., Camadro, J. M., Labbe, P., and Scalla, R. 1989. Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem. J 260:231235.Google Scholar
Matsumoto, H., Kashimoto, Y., and Warabi, E. 1999. Basis for common chickweed (Stellaria media) tolerance to oxyfluorfen. Pestic. Biochem. Physiol 64:4753.Google Scholar
Ritter, R. L. and Coble, H. D. 1981. Penetration, translocation, and metabolism of acifluorfen in soybean (Glycine max), common ragweed (Ambrosia artemisiifolia), and common cocklebur (Xanthium pensylvanicum). Weed Sci 29:474480.Google Scholar
Sauer, J. D. 1957. Recent migration and evolution of the dioecious amaranths. Evolution 11:1131.CrossRefGoogle Scholar
Shoup, D. E. and Al-Khatib, K. 2004. Control of protoporphyrinogen oxidase inhibitor-resistant common waterhemp (Amaranthus rudis) in corn and soybean. Weed Technol 18:332340.Google Scholar
Shoup, D. E., Al-Khatib, K., and Peterson, D. E. 2003. Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci 51:145150.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci 50:700712.Google Scholar
Unland, D. R., Al-Khatib, K., and Peterson, D. E. 1999. Interactions between imazamox and diphenylethers. Weed Sci 47:462466.Google Scholar
Vanstone, D. E. and Stobbe, E. H. 1978. Root uptake, translocation, and metabolism of nitrofluorfen and oxyfluorfen by fababeans (Vicia faba) and green foxtail (Setaria viridis). Weed Sci 26:389392.Google Scholar
Warabi, E., Usui, K., Tanaka, Y., and Matsumoto, H. 2001. Resistance of a soybean cell line to oxyfluorfen by overproduction of mitochondrial protoporphyrinogen oxidase. Pest Manag. Sci 57:743748.Google Scholar
Witkowski, D. A. and Halling, B. P. 1989. Inhibition of plant protoporphyrinogen oxidase by the herbicide acifluorfen-methyl. Plant Physiol 90:12391242.Google Scholar