Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-15T09:23:07.745Z Has data issue: false hasContentIssue false

Chlorophyll fluorescence evaluation of agrochemical interactions with propanil on propanil-resistant barnyardgrass (Echinochloa crus-galli)

Published online by Cambridge University Press:  12 June 2017

Ronald E. Talbert
Affiliation:
Department of Agronomy, University of Arkansas, Fayetteville, AR 72704
Robert E. Hoagland
Affiliation:
USDA-ARS, Southern Weed Science Research Unit, P.O. Box 350, Stoneville, MS 38776

Abstract

Resistance to propanil by a barnyardgrass (BYG) biotype has been reported, and its occurrence is becoming widespread in U.S. rice-producing regions. Interactions between propanil and the herbicides anilofos, molinate, pendimethalin, piperophos, quinclorac, and thiobencarb and the insecticide carbaryl were evaluated in laboratory studies for improved control of propanil-resistant barnyardgrass (R-BYG). Chlorophyll fluorescence measurements of BYG leaf segments were used to ascertain electron transport inhibition and to assess the synergy/antagonism of propanil (100 μM) with the various additives (50 μM). Synergistic effects on photosynthetic inhibition were found with anilofos, carbaryl, pendimethalin, and piperophos in combination with propanil. Such synergistic actions of chemicals with propanil may lead to chemical combinations useful for R-BYG control.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1999 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahrens, W. H. 1989. Uptake and action of metribuzin in soybeans (Glycine max) and two weed species as monitored by chlorophyll fluorescence. Weed Sci. 37: 631638.Google Scholar
Ahrens, W. H., Arntzen, C. J., and Stoller, E. W. 1981. Chlorophyll fluorescence assay for the determination of triazine resistance. Weed Sci. 29: 316322.Google Scholar
Campbell, T. A., Genter, W. A., and Danielson, L. L. 1981. Evaluation of herbicide interaction using linear regression modeling. Weed Sci. 29: 378381.Google Scholar
Carey III, V. F., Duke, S. O., Hoagland, R. E., and Talbert, R. E. 1995a. Resistance mechanism of propanil-resistant BYG: I. Absorption, translocation, and site of action studies. Pestic. Biochem. Physiol. 52: 182189.Google Scholar
Carey III, V. F., Hoagland, R. E., and Talbert, R. E. 1995b. Verification and distribution of propanil-resistant barnyardgrass (Echinochloa crus-galli) in Arkansas. Weed Technol. 9: 366372.CrossRefGoogle Scholar
Carey III, V. F., Hoagland, R. E., and Talbert, R. E. 1997. Resistance mechanism of propanil-resistant barnyardgrass: II. In-vivo metabolism of the propanil molecule. Pestic. Sci. 49: 333338.Google Scholar
Caseley, J. C., Leah, J. M., Riches, C. R., and Valverde, B. E. 1996. Combating propanil resistance in Echinochloa colona with synergists that inhibit acylamidase and oxygenases. Second Int. Weed Control Congr. 2: 455460.Google Scholar
Chism, W. J., Bingham, S. W., and Shaver, R. L. 1991. Uptake, translocation, and metabolism of quinclorac in two grass species. Weed Technol. 5: 771775.CrossRefGoogle Scholar
Colby, S. R. 1967. Calculating synergistic and antagonistic responses of herbicide combinations. Weeds 5: 2022.Google Scholar
Daniell, H., Kumarachinnayan, P., and Kulandaivelu, G. 1981. Action of propanil on in vivo chlorophyll a fluorescence in Echinochloa crus-galli and rice. Weed Res. 21: 171177.CrossRefGoogle Scholar
Devine, M. D., Duke, S. O., and Fedtke, C. 1993. Herbicide effects on lipid synthesis. Pages 225242 in Physiology of Herbicide Action. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Ducruet, J., Sixto, H., and Garcia-Baudin, J. 1993. Using chlorophyll fluorescence induction for a quantitative detoxification assay with mctribuzin and chlorotoluron in excised wheat (Triticum aestivum and Triticum durum) leaves. Pestic. Sci. 38: 295301.Google Scholar
Duke, S. O. 1993. Mechanisms for resistance of weeds to herbicides. Proc. Beltwide Cotton Conf. 3: 15091511.Google Scholar
Enyinnia, T. 1992. Chemical weed control in rainfed upland rice in Nigeria. Trap. Pest Manag. 38: 408410.Google Scholar
Fischer, A. J., Granados, E., and Trujillo, D. 1993. Propanil resistance in populations of junglerice (Echinochloa colona) in Colombian rice fields. Weed Sci. 41: 201206.Google Scholar
Flint, J. L., Cornelius, P. L., and Barrett, M. 1988. Analyzing herbicide interactions: a statistical treatment of Colby's method. Weed Technol. 2: 304309.CrossRefGoogle Scholar
Frear, D. S. and Still, G. G. 1968. The metabolism of 3,4-dichloropropionanilide in plants. Partial purification and properties of an aryl acylamidase from rice. Phytochemistry 7: 913920.Google Scholar
Gleiter, H. M. and Renger, G. 1993. A simple fluorometric detection of photosystem II inhibitors. Pages 6974 in Target Assays for Modern Herbicides and Related Phytotoxic Compounds. Boca Raton, FL: Lewis Publishers.Google Scholar
Gressel, J., Ammon, H. U., Fogelfors, H., Gasquez, J., Kay, Q.O.N., and Keys, H. 1982. Discovery and distribution of herbicide-related weeds outside North America. Pages 3155 in Herbicide Resistance in Plants. New York: J. Wiley.Google Scholar
Grossman, K. and Kwiatkowski, J. 1993. Selective induction of ethylene and cyanide biosynthesis appears to be involved in the selectivity of the herbicide quinclorac between rice and barnyardgrass. J. Plant Physiol. 142: 457466.CrossRefGoogle Scholar
Grossman, K. and Kwiatkowski, J. 1995. Evidence for a causative role of cyanide, derived from ethylene biosynthesis, in the herbicidal mode of action of quinclorac in barnyardgrass. Pestic. Biochem. Physiol. 51: 150160.Google Scholar
Habash, D., Percival, M. P., and Baker, N. R. 1985. Rapid chlorophyll fluorescence technique for the study of penetration of photosynthetically active herbicides into leaf tissue. Weed Res. 25: 389395.Google Scholar
Hamill, A. S. and Penner, D. 1973. Interaction of alachlor and carbofuran. Weed Sci. 21: 330335.Google Scholar
Hatzios, K. K. and Penner, D. 1985. Interactions of herbicides with other agrochemicals in higher plants. Rev. Weed Sci. 1: 164.Google Scholar
Heap, I. M. 1997. The occurrence of herbicide-resistant weeds worldwide. Pestic. Sci. 51: 234235.Google Scholar
Hodgkinson, M. C., Joyce, D. C., and Smillie, R. M. 1995. Chlorophyll fluorescence can be used to evaluate herbicide efficacy with and without adjuvants. Fourth Int. Symp. Adjuvants Agrochem. 4: 249254.Google Scholar
Jordan, D. L. 1997. Efficacy of reduced rates of quinclorac applied with propanil or propanil plus molinate in dry-seeded rice (Oryza sativa). Weed Sci. 45: 824828.Google Scholar
Koo, S. J., Neal, J. C., and Di Tomaso, J. M. 1994. Quinclorac-induced electrolyte leakage in seedling grasses. Weed Sci. 42: 17.Google Scholar
Koo, S. J., Neal, J. C., and Di Tomaso, J. M. 1997. Mechanism of action and selectivity of quinclorac in grass roots. Pestic. Biochem. Physiol. 57: 4453.Google Scholar
Leah, J. M., Caseley, J. C., Riches, C. R., and Valverde, B. 1994. Elevated activity of aryl acylamidase is associated with propanil resistance in jungle-rice, Echinochloa colona (L.) Link. Pestic. Sci. 42: 281289.Google Scholar
Lopez-Martinez, N., Marshall, G., and De Pardo, R. 1997. Resistance of barnyardgrass (Echinochloa crus-galli) to atrazine and quinclorac. Pestic. Sci. 51: 171175.3.0.CO;2-7>CrossRefGoogle Scholar
Nash, R. G. 1981. Phytotoxic interaction studies—techniques for evaluation and presentation of results. Weed Sci. 29: 147155.Google Scholar
Nash, R. G. and Jansen, L. L. 1973. Determining phytotoxic pesticide interactions in soil. J. Environ. Qual. 2: 503510.Google Scholar
Norsworthy, J. K., Talbert, R. E., and Hoagland, R. E. 1998. Chlorophyll fluorescence for rapid detection and confirmation of propanil-resistant barnyardgrass (Echinochloa crus-galli). Weed Sci. 46: 163169.Google Scholar
Peabody, D. 1974. Herbicide tolerant weeds appear in western Washington. Weeds Today 5: 14.Google Scholar
Prakash, T. R., Murthy, R. S., and Swamy, P. M. 1989. Influence of thiobencarb on nitrate reductase, nitrite reductase, and DCPIP photoreduction in rice and Echinochloa crus-galli (L.) (barnyardgrass). Weed Res. 19: 427432.CrossRefGoogle Scholar
Riches, C. R., Knights, J. S., Chaves, L., Caseley, J. C., and Valverde, B. E. 1997. The role of pendimethalin in the integrated management of propanil-resistant Echinochloa colona in Central America. Pestic. Sci. 51: 341346.Google Scholar
Ryan, G. F. 1970. Resistance of common groundsel to simazine and atrazine. Weed Sci. 18: 614616.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9: 218227.Google Scholar
Sine, C., ed. 1993. Farm Chemicals Handbook. Page 22 in Section C, Pesticide Directory. Willoughby, OH: Meister Publishing.Google Scholar
Smith, R. J. and Baltazar, A. M. 1993. Control of propanil-resistant barnyardgrass. Proc. South. Weed Sci. Soc. 46: 92.Google Scholar
Valverde, B. E. 1996. Management of herbicide resistant weeds in Latin America: the case of propanil-resistant Echinochloa colona in rice. Second Int. Weed Control Congr. 2: 415420.Google Scholar
Vaughn, K. C. and Lehnen, L. P. Jr. 1991. Mitotic disrupter herbicides. Weed Sci. 39: 450457.Google Scholar
Voss, M., Renger, G., Kotter, C., and Graber, P. 1984. Fluorometric detection of photosystem II herbicide penetration and detoxification in whole leaves. Weed Sci. 32: 675680.Google Scholar
Walton, L. C., and Holmdal, J. A. 1992. Propanil tank mix strategies in rice for hard-to-control Echinochloa species. Proc. South. Weed Sci. Soc., 45: 98.Google Scholar
Zhang, J., Hamill, A. S., and Weaver, S. E. 1995. Antagonism and synergism between herbicides: trends from previous studies. Weed Technol. 9: 8690.CrossRefGoogle Scholar