Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T06:45:22.876Z Has data issue: false hasContentIssue false

Bacterial Stimulation by Carbamothioate Herbicides

Published online by Cambridge University Press:  12 June 2017

James G. Mueller
Affiliation:
Dep. Agron. and Soils, Clemson Univ., Clemson, SC 29634-0359
Horace D. Skipper
Affiliation:
Dep. Agron. and Soils, Clemson Univ., Clemson, SC 29634-0359
Ernest G. Lawrence
Affiliation:
Dep. Agron. and Soils, Clemson Univ., Clemson, SC 29634-0359
Ellis L. Kline
Affiliation:
Dep. Microbiol., Clemson Univ., Clemson, SC 29634-0359

Abstract

Laboratory studies enumerated butylate-, EPTC-, vernolate-, pebulate-, and cycloate-utilizing bacteria and actinomycetes in a Dothan loamy sand following repeated use of butylate, EPTC, or vernolate. Herbicide utilizers were isolated on a defined medium composed of minimal salts plus 200 mg/L herbicide as the primary carbon source plus 25 mg/L TTC as an indicator of organisms capable of metabolizing the herbicide substrates. Media inoculated with a butylate-history soil developed more TTC-red actinomycetes on the butylate-indicator agar than did media inoculated with a non-herbicide-history soil. Similarly, media inoculated with a vernolate-history soil developed more TTC-red bacteria on the vernolate-indicator agar. Cross-adaptation from vernolate to butylate and cycloate was evident, with inoculant from the vernolate-history soil exhibiting an increase in bacterial counts when butylate or cycloate was present as the primary carbon source. Likewise, previous butylate exposure corresponded with an increase in the number of vernolate- and pebulate-utilizing actinomycetes. Previous exposure to EPTC resulted in an increased population of butylate- and pebulate-utilizing actinomycetes.

Type
Soil, Air, and Water
Copyright
Copyright © 1989 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Alexander, M. 1977. Soil Microbiology. 2nd ed. John Wiley and Sons, New York. 467 pp.Google Scholar
2. Bochner, B. R. and Savageau, M. A. 1977. Generalized indicator plate for genetic, metabolic and taxonomic studies with microorganisms. Appl. Environ. Microbiol. 33:434444.CrossRefGoogle ScholarPubMed
3. Dowler, C. C., Marti, L. S., Kvien, C., Skipper, H. D., Gooden, D. T., and Zublena, J. P. 1988. Accelerated degradation potential of selected herbicides in the southeastern United States. Weed Tech. 1:350358.CrossRefGoogle Scholar
4. Felsot, A., Maddox, J. V., and Bruce, W. 1981. Enhanced microbial degradation of carbofuran in soils with histories of furadan use. Bull. Environ. Contam. Toxicol. 26:781788.CrossRefGoogle ScholarPubMed
5. Gauger, W. K., McDonald, J. M., Adrian, N. R., Matthees, D. P., and Walgenbach, D. D. 1986. Characterization of a streptomycete growing on organophosphate and carbamate insecticides. Arch. Environ. Contam. Toxicol. 15:137141.CrossRefGoogle ScholarPubMed
6. Harvey, R. G., McNevin, G. R., Albright, J. W., and Kozak, M. E. 1986. Wild proso millet Panicum milicum control with thiocarbamate herbicides on previously treated soils. Weed Sci. 34:773780.CrossRefGoogle Scholar
7. Kaufman, D. D. and Edwards, D. F. 1983. Pesticide/microbe interaction effects on persistence of pesticides in soil. Pages 177182 in Miyamoto, J. and Kearney, P. C., eds. Pesticide Chemistry, Human Welfare and the Environment. Vol. 4. Pergamon Press, New York.CrossRefGoogle Scholar
8. Kaufman, D. D. and Kearney, P. C. 1965. Microbial degradation of isopropyl-N-3-chlorophenylcarbamate and 2-chloroethyl-N-3-chlorophenylcarbamate. Appl. Microbiol. 13:443446.CrossRefGoogle ScholarPubMed
9. Krieg, R. N. and Holt, J. G. 1984. Bergey's Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore, MD. 964 pp.Google Scholar
10. Lee, H. 1984. EPTC (S-ethyl N,N-dipropylthiocarbamate)-degrading microorganisms isolated from a soil previously exposed to EPTC. Soil Biol. Biochem. 16:529531.CrossRefGoogle Scholar
11. McCusker, V. W., Skipper, H. D., Zublena, J. P., and Gooden, D. T. 1988. Biodegradation of carbamothioate herbicides in butylate-history soil. Weed Sci. 36:818823.CrossRefGoogle Scholar
12. Moorman, T. 1988. Populations of EPTC-degrading microorganisms in soils with accelerated rates of EPTC degradation. Weed Sci. 36:96101.CrossRefGoogle Scholar
13. Mueller, J. G., Skipper, H. D., and Kline, E. L. 1988. Loss of butylate-utilizing ability by a Flavobacterium . Pestic. Biochem. Physiol. 32:189196.CrossRefGoogle Scholar
14. Obrigawitch, T., Martin, A. R., and Roeth, F. W. 1983. Degradation of thiocarbamate herbicides in soils exhibiting rapid EPTC breakdown. Weed Sci. 31:187192.CrossRefGoogle Scholar
15. Rahman, A., Atkinson, G. C., Douglas, J. A., and Sinclair, D. P. 1979. Eradicane causes problems. N.Z. J. Agric. 139:4749.Google Scholar
16. Roeth, F. W. 1986. Enhanced herbicide degradation in soil with repeated applications. Rev. Weed Sci. 2:4566.Google Scholar
17. Rudyanski, W. J., Fawcett, R. S., and McAllister, R. S. 1987. Effect of prior pesticide use on thiocarbamate herbicide persistence and giant foxtail (Setaria faberi) control. Weed Sci. 35:6874.CrossRefGoogle Scholar
18. Skipper, H. D., Murdock, E. C., Gooden, D. T., Zublena, J. P., and Amakiri, M. A. 1986. Enhanced herbicide biodegradation in South Carolina soils previously treated with butylate. Weed Sci. 34:558563.CrossRefGoogle Scholar
19. Skipper, H. D., Mueller, J. G., Ward, V. L., and Wagner, S. C. 1986. Microbial degradation of herbicides. Pages 457476 in Camper, N. D., ed. Research Methods in Weed Science. 3rd ed. South. Weed Sci. Soc., Champaign, IL.Google Scholar
20. Tam, A. C., Behki, R. M., and Khan, S. U. 1987. Isolation and characterization of a S-ethyl-N,N-dipropylthiocarbamate-degrading Arthrobacter strain and evidence for plasmid-associated S-ethyl-N,N-dipropylthiocarbamate degradation. Appl. Environ. Microbiol. 53:10881093.CrossRefGoogle ScholarPubMed
21. Tuxhorn, G. L., Roeth, F. W., Martin, A. W., and Wilson, R. G. 1986. Butylate persistence and activity in soils previously treated with thiocarbamates. Weed Sci. 34:961965.CrossRefGoogle Scholar
22. Varn, J. E. Jr., Gooden, D. T., Skipper, H. D., and Zublena, J. P. 1986. Evaluation of vernolate with herbicide extenders in peanuts. Proc. South. Weed Sci. Soc. 39:48.Google Scholar
23. Ward, V. L. 1986. Factors affecting enhanced biodegradation of carbamothioate herbicides in soils. M.S. Thesis, Clemson Univ., Clemson, SC. 60 pp.Google Scholar
24. Yarden, O., Aharonson, N., and Katan, J. 1987. Accelerated microbial degradation of methyl benzimidazol-2-yl-carbamate in soil and its control. Soil Biol. Biochem. 19:735739.CrossRefGoogle Scholar