The intergeniculate leaflet (IGL) is a distinct subdivision of the lateral geniculate complex which receives retinal input and projects upon a circadian pacemaker, the suprachiasmatic nucleus (SCN). In the present study, we have analyzed the organization of the IGL and its connections in the hamster, a species commonly used in circadian rhythm studies. The location of the IGL is defined by the presence of retinal afferents demonstrated by anterograde transport of cholera toxin-HRP, neuropeptide Y-containing neurons and axons, cells retrogradely labeled from the regions of the SCN and contralateral IGL, and substance P-containing axons. It is a long nucleus extending the entire rostrocaudal axis of the geniculate. The most rostral IGL lies between the lateral dorsal thalamus, ventrolateral part, and the horizontal cerebral fissure. It then enlarges ventral to the rostral dorsal lateral geniculate, medial to the optic tract. The mid-portion of the leaflet is a thin lamina intercalated between the dorsal and ventral geniculate nuclei. The extended caudal portion of the nucleus lies lateral and ventral to the medial geniculate and is contiguous with the zona incerta and the lateral terminal nucleus. The IGL contains populations of neuropeptide Y (NPY+) and enkephalin (ENK+) neurons which project to the retinorecipient portion of the SCN. In addition to the immunoreactive perikarya, the IGL contains plexuses of NPY+, ENK +, substance P-, serotonin-, and glutamic acid decarboxylase-immunoreactive axons.
Retrograde transport studies demonstrate that, in addition to the NPY+ neurons, there is a population of non-NPY+ neurons projecting upon the SCN. There is also a reciprocal projection upon the IGL from neurons in the SCN region, particularly the retrochiasmatic area. The hamster SCN differs from the rat in containing a distinct subdivision of substance P-immunoreactive neurons.