Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T19:47:24.421Z Has data issue: false hasContentIssue false

The effects of serotonin drugs on horizontal and ganglion cells in the rabbit retina

Published online by Cambridge University Press:  02 June 2009

Stuart C. Mangel
Affiliation:
Departments of Ophthalmology and of Physiology and Biophysics, the Ellen Gregg Ingalls Eye Research Institute and the Neurobiology Research Center, University of Alabama at Birmingham
William J. Brunken
Affiliation:
Department of Biology, Boston College, Boston

Abstract

We have investigated the effects of a serotonin 5-HT2 antagonist and a 5-HTIA agonist on horizontal and ganglion cells in the rabbit retina. Simultaneous intracellular horizontal cell and extracellular ganglion cell recordings were obtained from a superfused in vitro rabbit eyecup preparation and the effects of bath applied drugs on these cells' light responses observed. Sinusoidally modulated current was also injected into horizontal cells while the extracellular spike activity of nearby, single-unit ganglion cells was monitored. Although the ON components of the light-evoked responses of ganglion cells were reduced by the 5-HT2 antagonist or the 5-HTIA agonist, the membrane potential and the light responses of horizontal cells and the 6-wave of the ERG were simultaneously unaffected. However, the drugs blocked current-driven ganglion cell spike activity induced by current injections into nearby horizontal cells. These results are discussed with respect to the site of action of these serotonin drugs and with respect to the circuitry of serotonergic neurons.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ames, A. & Nesbitt, F.B. (1981). In vitro retina as an experimental model of the nervous system. Journal of Neurochemistry 37, 867877.CrossRefGoogle Scholar
Blazynski, C., Ferrendelli, J.A. & Cohen, A.I. (1985). Indoleaminesensitive adenylate-cyclase in rabbit retina: Characterization and distribution. Journal of Neurochemistry 45, 440447.CrossRefGoogle ScholarPubMed
Bradley, P.B., Engel, G., Fenrick, W., Fozard, J.R., Humphrey, P.P.A., Middlemiss, D.N., Mylecharane, E.J., Richardson, B.P. & Saxema, P.R. (1986). Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25, 563576.CrossRefGoogle ScholarPubMed
Brunken, W.J. & Daw, N.W. (1986). 5-HT2 antangonists reduce ON-responses in the rabbit retina. Brain Research 384, 161165.CrossRefGoogle Scholar
Brunken, W.J. & Daw, N.W. (1987). The actions of serotonergic agonists and antagonists on the activity of brisk ganglion cells in the rabbit retina. Journal of Neuroscience 7, 40544065.CrossRefGoogle ScholarPubMed
Brunken, W.J. & Daw, N.W. (1988). Neuropharmacological analysis of the role of indoleamine-accumulating amacrine cells in the rabbit retina. Visual Neuroscience 1, 275285.CrossRefGoogle ScholarPubMed
Caldwell, J.H. & Daw, N.W. (1978). New properties of rabbit retinal ganglion cells. Journal of Physiology 276, 257276.CrossRefGoogle ScholarPubMed
Cohen, M.L., Kruz, K.D., Mason, N.R., Fuller, R.W., Maizoni, G.P. & Grecht, W.L. (1985). Pharmacological activity of the isomers of LY53857, potent and selective 5-HT2 receptor antagonist. Journal of Pharmacological and Experimental Therapeutics 235, 319323.Google Scholar
Dacheux, R.F. & Raviola, E. (1986). The rod pathway in the rabbit retina: A depolarizing bipolar and amacrine cell. Journal of Neuroscience 6, 331345.CrossRefGoogle ScholarPubMed
Dick, E. & Miller, R.F. (1978). Light-evoked potassium activity in mudpuppy retina: Its relationship to the b-wave of the electroretinogram. Brain Research 154, 388394.Google Scholar
Ehincer, B. & Floren, I. (1976). Indoleamine accumulating neurons in the retina of rabbit, cat and goldfish. Cell and Tissue Research 175, 3748.Google Scholar
Ehinger, B. & Hallengren, C. (1987). Histamine in the retina. Acta Physiologica Scandinavica 129, 263265.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. & Kolb, H. (1975). A bistratified amacrine cell and synaptic circuity in the inner plexiform layer of the retina. Brain Research 84, 293300.CrossRefGoogle Scholar
Gozlan, H., El Mestikawy, S., Pichat, L., Glowinski, J. & Harmon, M. (1983). Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-Pat. Nature 305, 140142.CrossRefGoogle ScholarPubMed
Hoyer, D., Engel, G. & Kalkman, H.O. (1985). Molecular pharmacology of 5-HT1, and 5-HT2 recognition sites in rat and pig brain membranes: Radioligand binding studies with3H-5-HT, 3H-8-OHDPAT, (-)125I-Iodocyanopinolol, 3H-mesulergine and 3H-ketanserin. European Journal of Pharmacology 118, 1323.CrossRefGoogle Scholar
Jensen, R.J. & Daw, N.W. (1986). Effects of dopamine and its agonists and antagonists on the receptive field properties of ganglion cells in the rabbit retina. Neuroscience 17, 837855.CrossRefGoogle ScholarPubMed
Kolb, H. & Famiglietti, E.V. (1974). Rod and cone pathways in the inner plexiform layer of cat retina. Science 186, 4749.CrossRefGoogle ScholarPubMed
Levick, W.R. (1972). Another tungsten microelectrode. Medical Electronics and Biological Engineering 10, 510515.CrossRefGoogle ScholarPubMed
Leysen, J.E., Awouters, F., Kennis, L., Laduron, P.M., Vandenberk, J. & Jansen, P.A.J. (1981). Receptor binding profile of R41468, a novel antagonist of 5-HT2 receptors. Life Science 28, 10151022.CrossRefGoogle ScholarPubMed
Mangel, S.C. (1991). Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. Journal of Physiology 442, 211234.CrossRefGoogle Scholar
Mangel, S.C. & Miller, R.F. (1987). Horizontal cells contribute to the receptive field surround of ganglion cells in the rabbit retina. Brain Research 414, 182186.CrossRefGoogle Scholar
Marchiafava, P.L. (1978). Horizontal cells influence membrane potential of bipolar cells in the retina of the turtle. Nature 275, 141142.CrossRefGoogle ScholarPubMed
Miller, R.F., Zalutsky, R.A. & Massey, S.C. (1986). A perfused rabbit retina preparation suitable for pharmacological studies. Journal of Neuroscience Methods 16, 309322.CrossRefGoogle ScholarPubMed
Mitchell, C.K. & Redburn, D.A. (1985). Analysis of presynaptic factors of the serotonin system in rabbit retina. Journal of Cell Biology 100, 6473.CrossRefGoogle Scholar
Muller, F., Wassle, H. & Voigt, T. (1988). Pharmacological modulation of the rod pathway in the cat retina. Journal of Neurophysiology 59, 115.CrossRefGoogle ScholarPubMed
Naka, K.-I. & NYE, P.W. (1971). Role of horizontal cells in organization of the catfish retinal receptive field. Journal of Neurophysiology 34, 785801.CrossRefGoogle ScholarPubMed
NAKA, K.-I. & Witkovsky, P. (1972). Dogfish ganglion cells discharge resulting from extrinsic polarization of the horizontal cells. Journal of Physiology 223, 449460.CrossRefGoogle ScholarPubMed
Nakatsuka, K. & Hamasaki, D.I. (1985). Destruction of the indoleamine-accumulating amacrine cells alters the ERG of rabbits. Investigative Ophthalmology and Visual Science 26, 11091116.Google ScholarPubMed
Nesselhut, T. & Osborne, N.N. (1982). Is noradrenaline a major catecholamine in the bovine retina? Neuroscience Letters 28, 4145.CrossRefGoogle Scholar
Nowak, J.Z. & Kulinski, J.Z. (1986). The origin and fate of histamine in the rabbit retina. Neurochemistry International 8, 5358.CrossRefGoogle ScholarPubMed
Osborne, N.N. (1980). In vitro experiments on the metabolism, uptake and release of 5-hydroxytryptamine in bovine retina. Brain Research 184, 283297.CrossRefGoogle Scholar
Osborne, N.N. & Nesselhut, T. (1983). Adrenaline: Occurrence in the bovine retina. Neuroscience Letters 39, 3336.CrossRefGoogle ScholarPubMed
Oyster, C.W. (1968). The analysis of image motion by the rabbit retina. Journal of Physiology 199, 613635.CrossRefGoogle ScholarPubMed
Pierce, P.A. & Peroutka, S.J. (1990). The 5-hydroxytryptamine receptor families. Seminars in the Neurosciences 1, 145153.Google Scholar
Raviola, E. & Dacheux, R.F. (1983). Variations in structure and response properties of horizontal cells in the retina of the rabbit. Vision Research 23, 12211227.CrossRefGoogle ScholarPubMed
Sandell, J.H. & Masland, R.H. (1986). A system of indoleamineaccumulating neurons in the rabbit retina. Journal of Neuroscience 6, 33313347.CrossRefGoogle ScholarPubMed
Sandell, J.H., Masland, R.H., Raviola, E. & Dacheux, R.F. (1989). Connections of indoleamine-accumulating cells in the rabbit retina. Journal of Comparative Neurology 283, 303313.CrossRefGoogle ScholarPubMed
Stockton, R.A. & Slaughter, M.M. (1989). B-wave of the electroretinogram: A reflection of ON bipolar cell activity. Journal of General Physiology 93, 101122.CrossRefGoogle ScholarPubMed
Strettoi, E., Dacheux, R.F. & Raviola, E. (1990). Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina. Journal of Comparative Neurology 295, 449466.CrossRefGoogle ScholarPubMed
Thier, P. & Wassle, H. (1984). Indoleamine-mediated reciprocal modulation of on-centre and off-centre ganglion cell activity in the retina of the cat. Journal of Physiology 351, 613630.CrossRefGoogle ScholarPubMed
Toyoda, J.-I. & Tonosaki, K. (1978). Effect of polarization of horizontal cells on the on-center bipolar cell of carp retina. Nature 226, 399400.CrossRefGoogle Scholar
Vaney, D.I. (1986). Morphological identification of serotonin-accumulating neurons in the living retina. Science 233, 444446.CrossRefGoogle ScholarPubMed
Wassle, H., Voight, T. & Patel, B. (1987). Morphological and immunocytochemical identification of indoleamine-accumulating neurons in the cat retina. Journal of Neuroscience 7, 15741585.CrossRefGoogle ScholarPubMed
Werblin, F.S. & Dowling, J.E. (1969). Organization of the retina of the mudpuppy, Necturus maculosis. II. Intracellular recording. Journal of Neurophysiology 32, 339355.CrossRefGoogle Scholar