Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T19:31:29.313Z Has data issue: false hasContentIssue false

The rod circuit in the rabbit retina

Published online by Cambridge University Press:  02 June 2009

David I. Vaney
Affiliation:
Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, University of Queensland, Queensland 4072, Australia
Heather M. Young
Affiliation:
Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, University of Queensland, Queensland 4072, Australia
Ian C. Gynther
Affiliation:
Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, University of Queensland, Queensland 4072, Australia

Abstract

Mammalian retinae have a well-defined neuronal pathway that serves rod vision. In rabbit retina, the different populations of interneurons in the rod pathway can be selectively labeled, either separately or in combination. The rod bipolar cells show protein kinase C immunoreactivity; the rod (An) amacrine cells can be distinguished in nuclear-yellow labeled retina; the rod reciprocal (S1 & S2) amacrine cells accumulate serotonin; and the dopaminergic amacrine cells show tyrosine-hydroxylase immunoreactivity. Furthermore, intracellular dye injection of the microscopically identified interneurons enables whole-population and single-cell studies to be combined in the same tissue. Using this approach, we have been able to analyze systematically the neuronal architecture of the rod circuit across the rabbit retina and compare its organization with that of the rod circuit in central cat retina. In rabbit retina, the rod interneurons are not organized in a uniform neuronal module that is simply scaled up from central to peripheral retina. Moreover, peripheral fields in superior and inferior retina that have equivalent densities of each neuronal type show markedly different rod bipolar to An amacrine convergence ratios, with the result that many more rod photoreceptors converge on an An amacrine cell in superior retina. In rabbit retina, much of the convergence in the rod circuit occurs in the outer retina whereas, in central cat retina, it is more evenly distributed between the inner and outer retina.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bloomfield, S.A. & Miller, R.F. (1986). A functional organization of ON and OFF pathways in the rabbit retina. Journal of Neuroscience 6, 113.CrossRefGoogle Scholar
Boycott, B.B. & Dowling, J.E. (1969). Organization of the primate retina: light microscopy. Philosophical Transactions of the Royal Society B (London) 255, 109184.Google Scholar
Boycott, B.B. & Kolb, H. (1973). The connections between bipolar cells and photoreceptors in the retina of the domestic cat. Journal of Comparative Neurology 148, 91114.CrossRefGoogle ScholarPubMed
Boycott, B.B. & Wässle, H. (1974). The morphological types of ganglion cells of the domestic cat's retina. Journal of Physiology 240, 397419.CrossRefGoogle ScholarPubMed
Brecha, N.C., Oyster, C.W. & Takahashi, E.S. (1984). Identification and characterization of tyrosine hydroxylase immunoreactive amacrine cells. Investigative Ophthalmology and Visual Science 25, 6670.Google ScholarPubMed
Brunken, W.J. & Daw, N.W. (1988 a). The effects of serotonin agonists and antagonists on the response properties of complex ganglion cells in the rabbit's retina. Visual Neuroscience 1, 181188.CrossRefGoogle ScholarPubMed
Brunken, W.J. & Daw, N.W. (1988 b). Neuropharmacological analysis of the role of indoleamine-accumulating amacrine cells in the rabbit retina. Visual Neuroscience 1, 275285.CrossRefGoogle ScholarPubMed
Bunt, A.H. (1978). Fine structure and radioautography of rabbit photoreceptor cells. Investigative Ophthalmology and Visual Science 17, 90104.Google ScholarPubMed
Cajal, S.R. (1893). La retiné des vertébrés. La Cellule 9, 19257.Google Scholar
Cohen, E. & Sterling, P. (1986). Accumulation of (3H)-glycine by cone bipolar neurons in the cat retina. Journal of Comparative Neurology 250, 17.CrossRefGoogle ScholarPubMed
Dacey, D.M. (1989). Monoamine-accumulating ganglion cell type of the cat's retina. Journal of Comparative Neurology 288, 5980.CrossRefGoogle ScholarPubMed
Dacheux, R.F. & Raviola, E. (1986). The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. Journal of Neuroscience 6, 331345.CrossRefGoogle ScholarPubMed
Daw, N.W., Jensen, R.J. & Brunken, W.J. (1990). Rod pathways in mammalian retinae. Trends in Neurosciences 13, 110115.CrossRefGoogle ScholarPubMed
Dowling, J.E. & Ehinger, B. (1978). Synaptic organization of the dopaminergic neurons in the rabbit retina. Journal of Comparative Neurology 180, 203220.CrossRefGoogle ScholarPubMed
Ehinger, B. & Florén, I. (1976). Indoleamine-accumulating neurons in the retina of rabbit, cat and goldfish. Cell and Tissue Research 175, 3748.CrossRefGoogle Scholar
Ehinger, B. & Holmgren, I. (1979). Electron microscopy of the indoleamine-accumulating neurons in the retina of the rabbit. Cell and Tissue Research 197, 175194.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. & Kolb, H. (1975). A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Research 84, 293300.CrossRefGoogle Scholar
Famiglietti, E.V. & Kolb, H. (1976). Structural basis for ON- and OFF-center responses in retinal ganglion cells. Science 194, 193195.CrossRefGoogle ScholarPubMed
Flagg-Newton, J., Simpson, I. & Lowenstein, W.R. (1979). Permeability of the cell-to-cell membrane channels in mammalian cell junction. Science 205, 404407.CrossRefGoogle Scholar
Freed, M.A., Smith, R.G. & Sterling, P. (1987). Rod bipolar array in the cat retina: pattern of input from rods and GABA-accumulating amacrine cells. Journal of Comparative Neurology 266, 445455.CrossRefGoogle ScholarPubMed
Hokoc, J.N. & Mariani, A.P. (1988). Synapses from bipolar cells onto dopaminergic amacrine cells in cat and rabbit retinas. Brain Research 461, 1726.CrossRefGoogle Scholar
Horikawa, K. & Armstrong, W.E. (1988). A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. Journal of Neuroscience Methods 25, 111.CrossRefGoogle ScholarPubMed
Hughes, A. (1971). Topographic relationships between the anatomy and physiology of the rabbit visual system. Documenta Ophthalmologica 30, 33159.CrossRefGoogle ScholarPubMed
Hughes, A. (1985). New perspectives in retinal organisation. Progress in Retinal Research 4, 243313.CrossRefGoogle Scholar
Jensen, R.J. (1989). Mechanism and site of action of a dopamine D1 antagonist in the rabbit retina. Visual Neuroscience 3, 573585.CrossRefGoogle ScholarPubMed
Jensen, R.J. & Daw, N.W. (1984). Effects of dopamine antagonists on receptive fields of brisk cells and directionally selective cells in the rabbit retina. Journal of Neuroscience 4, 29722985.CrossRefGoogle ScholarPubMed
Kolb, H. (1979). The inner plexiform layer in the retina of the cat: electron microscopic observations. Journal of Neurocytology 8, 295329.CrossRefGoogle ScholarPubMed
Kolb, H. & Famiglietti, E.V. (1974). Rod and cone pathways in the inner plexiform layer of cat retina. Science 186, 4749.CrossRefGoogle ScholarPubMed
Kolb, H., Nelson, R. & Mariani, A. (1981). Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study. Vision Research 21, 10811114.CrossRefGoogle ScholarPubMed
Kosaka, T., Kosaka, K., Hataguchi, Y., Nagatsu, I., Wu, J.-Y., Ottersen, O.P., Storm-Mathisen, J. & Hama, K. (1987). Catecholaminergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat. Experimental Brain Research 66, 191210.CrossRefGoogle ScholarPubMed
Marc, R.E. (1989). The role of glycine in the mammalian retina. Progress in Retinal Research 8, 67107.CrossRefGoogle Scholar
Marc, R.E., Massey, S.C., Kalloniatus, M. & Basinger, S.F. (1989). Immunochemical evidence that the fast neurotransmitter of rods, cones, bipolar and ganglion cells is glutamic acid. Investigative Ophthalmology and Visual Science (Suppl.) 30, 320.Google Scholar
Massey, S.C. (1990). Cell types using glutamate as a neurotransmitter in the vertebrate retina. Progress in Retinal Research 9, 399425.CrossRefGoogle Scholar
McGuire, B.A., Stevens, J.K. & Sterling, P. (1984). Microcircuitry of bipolar cells in cat retina. Journal of Neuroscience 4, 29202938.CrossRefGoogle ScholarPubMed
Mills, S.L. & Massey, S.C. (1990). DAPI incubation labels An amacrine cells in rabbit retina. Investigative Ophthalmology and Visual Science (Suppl.) 31, 535.Google Scholar
Negishi, K., Kato, S. & Teranishi, T. (1988). Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retinas. Neuroscience Letters 94, 247252.CrossRefGoogle ScholarPubMed
Nelson, R. (1982). An amacrine cells quicken time course of rod signals in the cat retina. Journal of Neurophysiology 47, 928947.CrossRefGoogle ScholarPubMed
Nelson, R. & Kolb, H. (1985). A17: a broad-field amacrine cell in the rod system of the cat retina. Journal of Neurophysiology 54, 592614.CrossRefGoogle ScholarPubMed
Nelson, R., Famiglietti, E.V. & Kolb, H. (1978). Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. Journal of Neurophysiology 41, 472483.CrossRefGoogle ScholarPubMed
Osborne, N.N. & Beaton, D.W. (1986). Direct histochemical locatisation of 5, 7-dihydroxytryptamine and the uptake of serotonin by a subpopulation of GABA neurones in the rabbit retina. Brain Research 382, 158162.CrossRefGoogle ScholarPubMed
Oyster, C.W., Takahashi, E.S., Cilluffo, M. & Brecha, N.C. (1985). Morphology and distribution of tyrosine hydroxylase-like immunoreactive neurons in the cat retina. Proceedings of the National Academy of Sciences of the U.S.A. 82, 63356339.CrossRefGoogle ScholarPubMed
Perry, V.H. & Walker, M. (1980). Amacrine cells, displaced amacrine cells and interplexiform cells in the retina of the rat. Proceedings of the Royal Society B (London) 208, 415431.Google Scholar
Piccolino, M., Neyton, J. & Gerschenfeld, H.M. (1984). Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3′:5′-monophosphate in horizontal cells of turtle retina. Journal of Neuroscience 4, 24772488.CrossRefGoogle ScholarPubMed
Polyak, S.L. (1941). The Retina. Chicago, Illinois: University of Chicago Press.Google Scholar
Pourcho, R.G. (1980). Uptake of (3H)-glycine and (3H)-GABA by amacrine cells in the cat retina. Brain Research 198, 333346.CrossRefGoogle ScholarPubMed
Pourcho, R.G. (1982). Dopaminergic amacrine cells in the cat retina. Brain Research 252, 101109.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1985). A combined Golgi and autoradiographic study of (3H)-glycine-accumulating amacrine cells in the cat retina. Journal of Comparative Neurology 233, 473480.CrossRefGoogle ScholarPubMed
Provis, J.M. (1979). The distribution and size of ganglion cells in the retina of the pigmented rabbit: a quantitative analysis. Journal of Comparative Neurology 185, 121137.CrossRefGoogle ScholarPubMed
Raviola, E. & Dacheux, R.F. (1987). Excitatory dyad synapse in rabbit retina. Proceedings of the National Academy of Sciences of the U.S.A. 84, 73247328.CrossRefGoogle ScholarPubMed
Raviola, G. & Raviola, E. (1967). Light and electron microscopic observations on the inner plexiform layer of the rabbit retina. American Journal of Anatomy 120, 403426.CrossRefGoogle ScholarPubMed
Sandell, J.H. & Masland, R.H. (1986). A system of indoleamine-accumulating neurons in the rabbit retina. Journal of Neuroscience 6, 33313347.CrossRefGoogle ScholarPubMed
Sandell, J.H., Masland, R.H., Raviola, E. & Dacheux, R.F. (1989). Connections of indoleamine-accumulating cells in the rabbit retina. Journal of Comparative Neurology 283, 303313.CrossRefGoogle ScholarPubMed
Sterling, P. (1983). Microcircuitry of the cat retina. Annual Review of Neuroscience 6, 149185.CrossRefGoogle ScholarPubMed
Sterling, P., Freed, M.A. & Smith, R.G. (1988). Architecture of rod and cone circuits to the on-beta ganglion cell. Journal of Neuroscience 8, 623642.CrossRefGoogle Scholar
Stewart, W.W. (1978). Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14, 741759.CrossRefGoogle ScholarPubMed
Strettoi, E., Raviola, E. & Dacheux, R.F. (1989). Synaptic connections of An amacrine cells in the rabbit retina. Society of Neuroscience Abstracts 15, 967.Google Scholar
Strettoi, E., Dacheux, R.F. & Raviola, E. (1990). Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina. Journal of Comparative Neurology 295, 449466.CrossRefGoogle ScholarPubMed
Tauchi, M. & Masland, R.H. (1984). The shape and arrangement of the cholinergic neurons in the rabbit retina. Proceedings of the Royal Society B (London) 223, 101119.Google Scholar
Tauchi, M., Madigan, N.K. & Masland, R.H. (1990). Shapes and distributions of the catecholamine-accumulating neurons in the rabbit retina. Journal of Comparative Neurology 293, 178189.CrossRefGoogle ScholarPubMed
Teranishi, T., Negishi, K. & Kato, S. (1983). Dopamine modulates Spotential amplitude and dye-coupling between external horizontal cells in carp retina. Nature 301, 243246.CrossRefGoogle ScholarPubMed
rk, I. & Stone, J. (1979). Morphology of catecholamine-containing amacrine cells in the cat's retina, as seen in retinal whole mounts. Brain Research 169, 261273.Google Scholar
Vaney, D.I. (1984). Coronate amacrine cells in the rabbit retina have the starburst dendritic morphology. Proceedings of the Royal Society B (London) 220, 501508.Google Scholar
Vaney, D.I. (1985). The morphology and topographic distribution of An amacrine cells in the cat retina. Proceedings of the Royal Society B (London) 224, 475488.Google Scholar
Vaney, D.I. (1986). Morphological identification of serotonin-accumulating neurons in the living retina. Science 233, 444446.CrossRefGoogle ScholarPubMed
Vaney, D.I. (1990). The mosaic of amacrine cells in the mammalian retina. Progress in Retinal Research 9, 49100.CrossRefGoogle Scholar
Vaney, D.I. (1991). Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neuroscience Letters (in press).CrossRefGoogle Scholar
Vaney, D.I., Peichl, L. & Boycott, B.B. (1981). Matching populations of amacrine cells in the inner nuclear and ganglion cell layers of the rabbit retina. Journal of Comparative Neurology 199, 373391.CrossRefGoogle ScholarPubMed
Vaney, D.I., Gynther, I.C. & Young, H.M. (1991). Rod-signal interneurons in the rabbit retina: 2. An amacrine cells. Journal of Comparative Neurology (in press).CrossRefGoogle ScholarPubMed
Versaux-Botteri, C., Simon, A., Vigny, A. & Nguyen-Legros, J. (1987). Existence d'une immunoréactivité au GABA dans les cellules amacrines dopaminergiques de la rétine de rat. Comptes rendus de l'Academie des Sciences D (Paris) 305, 381386.Google Scholar
Voigt, T. & Wässle, H. (1987). Dopaminergic innervation of An amacrine cells in mammalian retina. Journal of Neuroscience 7, 41154128.CrossRefGoogle ScholarPubMed
Wässle, H. & Chun, M.H. (1988). Dopaminergic and indoleamine-accumulating amacrine cells express GABA-like immunoreactivity in the cat retina. Journal of Neuroscience 8, 33833394.CrossRefGoogle ScholarPubMed
Wässle, H. & Riemann, H.J. (1978). The mosaic of nerve cells in the mammalian retina. Proceedings of the Royal Society B (London) 200, 441461.Google Scholar
Wässle, H., Levick, W.R. & Cleland, B.G. (1975). The distribution of the alpha type of ganglion cells in the cat's retina. Journal of Comparative Neurology 159, 419438.CrossRefGoogle ScholarPubMed
Wässle, H., Peichl, L. & Boycott, B.B. (1978). Topography of horizontal cells in the retina of the domestic cat. Proceedings of the Royal Society B (London) 203, 269291.Google Scholar
Wässle, H., Boycott, B.B. & Illing, R.-B. (1981a). Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations. Proceedings of the Royal Society B (London) 212, 177195.Google Scholar
Wässle, H., Peichl, L. & Boycott, B.B. (1981b). Morphology and topography of on- and off-alpha cells in the cat retina. Proceedings of the Royal Society B (London) 212, 157175.Google Scholar
Wässle, H., Peichl, L. & Boycott, B.B. (1981c). Dendritic territories of cat retinal ganglion cells. Nature 292, 344345.CrossRefGoogle ScholarPubMed
Wässle, H., Voigt, T. & Patel, B. (1987). Morphological and immunocytochemical identification of indoleamine-accumulating neurons in the cat retina. Journal of Neuroscience 7, 15741585.CrossRefGoogle ScholarPubMed
Wong, R.O.L., Henry, G.H. & Medveczky, C.J. (1986). Bistratified amacrine cells in the retina of the tammar wallaby – Macropus eugenii. Experimental Brain Research 63, 102105.CrossRefGoogle ScholarPubMed
Wulle, I. & Wagner, H.-J. (1990). GABA and tyrosine hydroxylase immunocytochemistry reveal different patterns of colocalization in retinal neurons of various vertebrates. Journal of Comparative Neurology 296, 173178.CrossRefGoogle ScholarPubMed
Young, H.M. & Vaney, D.I. (1990). The retinae of prototherian mammals possess neuronal types that are characteristic of non-mammalian retinae. Visual Neuroscience 5, 6166.CrossRefGoogle ScholarPubMed
Young, H.M. & Vaney, D.I. (1991). Rod-signal interneurons in the rabbit retina: 1. Rod bipolar cells. Journal of Comparative Neurology (in press).CrossRefGoogle ScholarPubMed