Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T04:25:37.511Z Has data issue: false hasContentIssue false

Endocannabinoids in the intact retina: 3H-anandamide uptake, fatty acid amide hydrolase immunoreactivity and hydrolysis of anandamide

Published online by Cambridge University Press:  03 February 2006

SHERRYE T. GLASER
Affiliation:
Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York Current address of Sherrye T. Glaser: Medical Department, Brookhaven National Laboratory, Upton, NY
DALE G. DEUTSCH
Affiliation:
Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
KEITH M. STUDHOLME
Affiliation:
Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
SARAH ZIMOV
Affiliation:
Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
STEPHEN YAZULLA
Affiliation:
Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York

Abstract

There is much evidence for an endocannabinoid system in the retina. However, neither the distribution of endocannabinoid uptake, the regulation of endocannabinoid levels, nor the role of endocannabinoid metabolism have been investigated in the retina. Here we focused on one endocannabinoid, anandamide (AEA), and its major hydrolyzing enzyme, fatty acid amide hydrolase (FAAH), in the goldfish retina. Immunoblots of FAAH immunoreactivity (IR) in goldfish retina, brain and rat retina, and brain homogenates showed a single band at 61 kDa that was blocked by preadsorption with peptide antigen. Specific FAAH IR (blocked by preadsorption) was most prominent over Müller cells and cone inner segments. Weaker label was observed over some amacrine cells, rare cell bodies in the ganglion cell layer, and in four lamina in the inner plexiform layer. FAAH activity assays showed that goldfish-retinal and brain homogenates hydrolyzed AEA at rates comparable to rat brain homogenate, and the hydrolysis was inhibited by methyl arachidonyl fluorophosphonate (MAFP) and N-(4 hydroxyphenyl)-arachidonamide (AM404), with IC50s of 21 nM and 1.5 μM, respectively. Cellular 3H-AEA uptake in the intact retina was determined by in vitro autoradiography. Silver-grain accumulation at 20°C was most prominent over cone photoreceptors and Müller cells. Uptake was significantly reduced when retinas were incubated at 4°C, or preincubated with 100 nM MAFP or 10 μM AM404. There was no differential effect of blocking conditions on the distribution of silver grains over cones or Müller cells. The codistribution of FAAH IR and 3H-AEA uptake in cones and Müller cells suggests that the bulk clearance of AEA in the retina occurs as a consequence of a concentration gradient created by FAAH activity. We conclude that endocannabinoids are present in the goldfish retina and underlay the electrophysiological effects of cannabinoid ligands previously shown on goldfish cones and bipolar cells.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alger, B.E. (2002). Retrograde signaling in the regulation of synaptic transmission: Focus on endocannabinoids. Progress in Neurobiology 68, 247286.Google Scholar
Ameri, A. (1999). The effects of cannabinoids on the brain. Progress in Neurobiology 58, 315348.Google Scholar
Beltramo, M., Stella, N., Calignano, A., Lin, S.Y., Makriyannis, A., & Piomelli, D. (1997). Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science 277, 10941097.Google Scholar
Bisogno, T., Delton-Vandenbroucke, I., Milone, A., Lagarde, M., & Di Marzo, V. (1999). Biosynthesis and inactivation of N-arachidonoylethanolamine (anandamide) and N-docosahexaenoylethanolamine in bovine retina. Archives of Biochemistry and Biophysics 370, 300307.Google Scholar
Bisogno, T., Melck, D., Bobrov, M.Y., Gretskaya, N.M., Bezuglov, V.V., De Petrocellis, L., & Di Marzo, V. (2000). N-acyl-dopamines: Novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochemical Journal 351, 817824.Google Scholar
Buckley, N.E., Hansson, S., Harta, G., & Mezey, É. (1998). Expression of the CB1 and CB2 receptor messenger RNAs during embryonic development in the rat. Neuroscience 82, 11311149.Google Scholar
Consroe, P., Musty, R., Rein, J., Tillery, W., & Pertwee, R.G. (1997). The perceived effects of smoked cannabis on patients with multiple sclerosis. European Neurology 38, 4448.Google Scholar
Cravatt, B.F., Demarest, K., Patricelli, M.P., Bracey, M.H., Giang, D.K., Martin, B.R., & Lichtman, A.H. (2001). Supersensitivity to anandamide and enhanced cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proceedings of the National Academy of Sciences of the U.S.A. 98, 93719376.Google Scholar
Dawson, W.W., Jimenez-Antillon, C.F., Perez, J.M., & Zeskind, J.A. (1977). Marijuana and vision—after ten years' use in Costa Rica. Investigative Ophthalmology and Visual Science 16, 689699.Google Scholar
Day, T.A., Rakhshan, F., Deutsch, D.G., & Barker, E.L. (2001). Role of fatty acid amide hydrolase in the transport of the endogenous cannabinoid anandamide. Molecular Pharmacology 59, 13691375.Google Scholar
De Petrocellis, L., Bisogno, T., Davis, J.B., Pertwee, R.G., & Di Marzo, V. (2000). Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: Inhibitors of anandamide uptake with negligible capsaicin-like activity. FEBS Letters 483, 5256.Google Scholar
De Petrocellis, L., Melck, D., Ueda, N., Maurelli, S., Kurahashi, T., Yamamoto, S., Marino, G., & Di Marzo, V. (1997). Novel inhibitors of brain, neuronal, and basophilic anandamide amidohydrolase. Biochemical and Biophysical Research Communications 231, 8288.Google Scholar
Desarnaud, F., Cadas, H., & Piomelli, D. (1995). Anandamide aminohydrolase activity in rat brain microsomes. Identification and partial characterization. Journal of Biological Chemistry 270, 60306035.Google Scholar
Deutsch, D.G. & Chin, S.A. (1993). Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochemical Pharmacology 46, 791796.Google Scholar
Deutsch, D.G., Glaser, S.T., Howell, J.M., Kunz, J.S., Puffenbarger, R.A., Hillard, C.J., & Abumrad, N. (2001). The cellular uptake of anandamide is coupled to its breakdown by fatty-acid amide hydrolase. Journal of Biological Chemistry 276, 69676973.Google Scholar
Deutsch, D.G., Omeir, R., Arreaza, G., Salehani, D., Prestwich, G.D., Huang, Z., & Howlett, A.C. (1997). Methyl arachidonyl fluorophosphonate: A potent irreversible inhibitor of anandamide amidase. Biochemical Pharmacology 53, 255260.Google Scholar
Deutsch, D.G., Ueda, N., & Yamamoto, S. (2002). The fatty acid amide hydrolase (FAAH). Prostaglandins Leukotrienes and Essential Fatty Acids 66, 201210.Google Scholar
Devane, W.A., Hanus, L., Breuer, A., Pertwee, R.G., Stevenson, L.S., Griffin, G., Gibson, D., Mandelbaum, A., Etinger, A., & Mechoulam, R. (1992). Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 19461949.Google Scholar
Diana, M.A. & Marty, A. (2004). Endocannabinoid-mediated short-term synaptic plasticity: Depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). British Journal of Pharmacology 142, 919.Google Scholar
Di Marzo, V., DePetrocellis, L., Fezza, F., Ligresti, A., & Bisogno, T. (2002). Anandamide receptors. Prostaglandins Leukotrienes and Essential Fatty Acids 66, 377391.Google Scholar
Dinh, T.P., Carpenter, D., Leslie, F.M., Freund, T.F., Katona, I., Sensi, S.L., Kathuria, S., & Piomelli, D. (2002). Brain monoglyceride lipase participating in endocannabinoid inactivation. Proceedings of the National Academy of Sciences of the U.S.A. 99, 1081910824.Google Scholar
Egertová, M., Giang, D.K., Cravatt, B.F., & Elphick, M.R. (1998). A new perspective on cannabinoid signaling: Complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain. Proceedings of the Royal Society B (London) 265, 20812085.Google Scholar
Elphick, M.R., Satou, Y., & Satoh, N. (2003). The invertebrate ancestry of endocannabinoid signaling: An orthologue of vertebrate cannabinoid receptors in the urochordate Ciona intestinalis. Gene 302, 95101.Google Scholar
Fan, S.F. & Yazulla, S. (2003). Biphasic modulation of voltage-dependent currents of retinal cones by cannabinoid CB1 agonist, WIN 55212-2. Visual Neuroscience 20, 177188.Google Scholar
Fan, S.F. & Yazulla, S. (2004). Inhibitory interaction of cannabinoid CB1 receptor and dopamine D2 receptor agonists on voltage-gated currents of goldfish cones. Visual Neuroscience 21, 6979.Google Scholar
Fan, S.F. & Yazulla, S. (2005). Reciprocal inhibition of voltage-gated potassium currents (IK(V)) by activation of cannabinoid CB1 and dopamine D1 receptors in ON bipolar cells of goldfish retina. Visual Neuroscience 22, 5563.Google Scholar
Fegley, D., Gaetani, S., Duranti, A., Tontini, A., Mor, M., Tarzia, G., & Piomelli, D. (2004a). Characterization of the fatty-acid amide hydrolase inhibitor URB597: Effects on anandamide and oleoylethanolamide deactivation. Journal of Pharmacology and Experimental Therapeutics 313, 352358.Google Scholar
Fegley, D., Kathuria, S., Mercier, R., Li, C., Goutopoulos, A., Makriyannis, A., & Piomelli, D. (2004b). Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172. Proceedings of the National Academy of Sciences of the U.S.A. 101, 87568761.Google Scholar
Fride, E. (2002). Endocannabinoids in the central nervous system—An overview. Prostaglandins Leukotrienes and Essential Fatty Acids 66, 221233.Google Scholar
Fowler, C.J. (2004). Metabolism of the endocannabinoids Anandamide and 2-Arachidonoyl glycerol. A review, with emphasis on the pharmacology of fatty acid amide hydrolase, a possible target for the treatment of neurodegenerative diseases and pain. Current Medicinal Chemistry 4, 161174.Google Scholar
Giang, D.K. & Cravatt, B.F. (1997). Molecular characterization of human and mouse fatty acid amide hydrolases. Proceedings of the National Academy of Sciences of the U.S.A. 94, 22382242.Google Scholar
Giuffrida, A., Beltramo, M., & Piomelli, D. (2001). Mechanisms of endocannabinoid inactivation: Biochemistry and pharmacology. Journal of Pharmacology and Experimental Therapeutics 298, 714.Google Scholar
Glaser, S.T., Abumrad, N.A., Fatade, F., Kaczocha, M., Studholme, K.M., & Deutsch, D.G. (2003). Evidence against the presence of an anandamide transporter. Proceedings of the National Academy of Sciences of the U.S.A. 100, 42694274.Google Scholar
Gulyas, A.I., Cravatt, B.F., Bracey, M.H., Dinh, T.P., Piomelli, D., Boscia, F., & Freund, T.F. (2004). Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. European Journal of Neuroscience 20, 441458.Google Scholar
Hanus, L., Abu-Lafi, S., Fride, E., Breuer, A., Vogel, Z., Shalev, D.E., Kustanovich, I., & Mechoulam, R. (2001). 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proceedings of the National Academy of Sciences of the U.S.A. 98, 36623665.Google Scholar
Herkenham, M., Lynn, A.B., Ross Johnson, M.R., Melvin, L.S., de Costa, B.R., & Rice, K.C. (1991). Characterization and localization of cannabinoid receptors in rat brain: A quantitative in vitro autoradiographic study. Journal of Neuroscience 11, 563583.Google Scholar
Hillard, C.J., Edgemond, W.S., Jarrahian, A., & Campbell, W.B. (1997). Accumulation of N-Arachidonoylethanolamine (Anandamide) into cerebellar granule cells occurs via facilitated diffusion. Journal of Neurochemistry 69, 631638.Google Scholar
Hillard, C.J. & Jarrahian, A. (2000). The movement of N-arachidonoylethanolamine (anandamide) across cellular membranes. Chemistry and Physics of Lipids 108, 123134.Google Scholar
Hillard, C.J., Wilkison, D.M., Edgemond, W.S., & Campbell, W.B. (1995). Characterization of the kinetics and distribution of N-arachidonylethanolamine (anandamide) hydrolysis by rat brain. Biochimica et Biophysica Acta 1257, 249256.Google Scholar
Jarrahian, A., Manna, S., Edgemond, W.S., Campbell, W.B., & Hillard, C.J. (2000). Structure–activity relationships among N-arachidonylethanolamine (anandamide) head group analogues for the anandamide transporter. Journal of Neurochemistry 74, 25972606.Google Scholar
Ju, W.K. & Neufeld, A.H. (2002). Cellular localization of cyclooxygenase-1 and cyclooxygenase-2 in the normal mouse, rat, and human retina. Journal of Comparative Neurology 452, 392399.Google Scholar
Katayama, K., Ueda, N., Kurahashi, Y., Suzuki, H., Yamamoto, S., & Kato, I. (1997). Distribution of anandamide amidohydrolase in rat tissues with special reference to small intestine. Biochimica et Biophysica Acta 1347, 212218.Google Scholar
Kathuria, S., Gaetani, S., Fegley, D., Valino, F., Duranti, A., Tontini, A., Mor, M., Tarzia, G., La Rana, G., Calignano, A., Giustino, A., Tattoli, M., Cuomo, V., & Piomelli, D. (2003). Modulation of anxiety through blockade of anandamide hydrolysis. Nature Medicine 9, 7681.Google Scholar
Kiplinger, G.F., Manno, J.E., Rodda, B.E., & Forney, R.B. (1971). Dose–response analysis of the effects of tetrahydrocannabinol in man. Clinical Pharmacology and Therapeutics 12, 650657.Google Scholar
Klooster, J., Studholme, K.M., & Yazulla, S. (2001). Localization of the AMPA subunit GluR2 in the outer plexiform layer of goldfish retina. Journal of Comparative Neurology 441, 155167.Google Scholar
Leung, D., Hardouin, C., Boger, D.L., & Cravatt, B.F. (2003). Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nature Biotechnology 6, 687691.Google Scholar
Lichtman, A.H., Hawkins, E.G., Griffin, G., & Cravatt, B.F. (2002). Pharmacological activity of fatty acids is regulated, but not mediated, by fatty acid amide hydrolase in vivo. Journal of Pharmacology and Experimental Therapeutics 302, 7379.Google Scholar
Linser, P.J., Smith, K., & Angelides, K. (1985). A comparative analysis of glial and neuronal markers in the retina of fish: Variable character of horizontal cells. Journal of Comparative Neurology 237, 264272.Google Scholar
Lio, Y.C., Reynolds, L.J., Balsinde, J., & Dennis, E.A. (1996). Irreversible inhibition of Ca2+-independent phospholipase A2 by methylarachidonyl fluorophosphonate. Biochimica et Biophysica Acta 1302, 5560.Google Scholar
López-Rodríguez, M.L., Viso, A., Ortega-Gutiérrez, S., Fowler, C.J., Tiger, G., deLago, E., Fernández-Ruiz, J., & Ramos, J.A. (2003). Design, synthesis and biological evaluation of new endocannabinoid transporter inhibitors. European Journal of Medical Chemistry 38, 403412.Google Scholar
Maejima, T., Hashimoto, K., Yoshida, T., Aiba, A., & Kano, M. (2001). Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron 31, 463475.Google Scholar
Matsuda, S., Kanemitsu, N., Nakamura, A., Mimura, Y., Ueda, N., Kurahashi, Y., & Yamamoto, S. (1997). Metabolism of anandamide, an endogenous cannabinoid receptor ligand, in porcine ocular tissues. Experimental Eye Research 64, 707711.Google Scholar
McAllister, S.D. & Glass, M. (2002). CB1 and CB2 receptor-mediated signalling: A focus on endocannabinoids. Prostaglandins Leukotrienes and Essential Fatty Acids 66, 161171.Google Scholar
Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumdky, M., Kaminski, N.E., Shatz, A.R., Gopher, A., Almog, S., Martin, B.R., & Compton, D.R. (1995). Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochemical Pharmacology 50, 8390.Google Scholar
Melis, M., Perra, S., Muntoni, A.L., Pillolla, G., Lutz, B., Marsicano, G., Di, M.V, Gessa, G.L., & Pistis, M. (2004). Prefrontal cortex stimulation induces 2-arachidonoyl-glycerol-mediated suppression of excitation in dopamine neurons. Journal of Neuroscience 24, 1070710715.Google Scholar
Miller, R.F. & Dowling, J.E. (1970). Intracellular responses of the Müller (glial) cells of the mudpuppy retina: Their relation to the b-wave of the electroretinogram. Journal of Neurophysiology 33, 323341.Google Scholar
Ohno-Shosaku, T., Shosaku, J., Tsubokawa, H., & Kano, M. (2002). Cooperative endocannabinoid production by neuronal depolarization and group I metabotropic glutamate receptor activation. European Journal of Neuroscience 15, 953961.Google Scholar
Ortar, G., Ligresti, A., DePetrocellis, L., Morera, E., & DiMarzo, V. (2003). Novel selective and metabolically stable inhibitors of anandamide cellular uptake. Biochemical Pharmacology 65, 14731481.Google Scholar
Pertwee, R.G. & Ross, R.A. (2002). Cannabinoid receptors and their ligands. Prostaglandins Leukotrienes and Essential Fatty Acids 66, 101121.Google Scholar
Piomelli, D., Beltramo, M., Glasnapp, S., Lin, S.Y., Goutopoulos, A., Xie, X.Q., & Makriyannis, A. (1999). Structural determinants for recognition and translocation by the anandamide transporter. Proceedings of the National Academy of Sciences of the U.S.A. 96, 58025807.Google Scholar
Porcella, A., Casellas, P., Gessa, G.L., & Pani, L. (1998). Cannabinoid receptor CB1 mRNA is highly expressed in the rat ciliary body: Implications for the antiglaucoma properties of marihuana. Molecular Brain Research 58, 240245.Google Scholar
Quistad, G.B., Sparks, S.E., Segall, Y., Nomura, D.K., & Casida, J.E. (2002). Selective inhibitors of fatty acid amide hydrolase relative to neuropathy target esterase and acetylcholinesterase: Toxicological implications. Toxicology and Applied Pharmacology 179, 5763.Google Scholar
Ramón y Cajal, S. (1972) The Structure of the Retina. Translated by Thorpe, S.A. & Glickstein, M., Springfield: Charles C Thomas.
Russo, E.B., Merzouki, A., Mesa, J.M., Frey, K.A., & Bach, P.J. (2004). Cannabis improves night vision: A case study of dark adaptometry and scotopic sensitivity in kif smokers of the Rif mountains of northern Morocco. Journal of Ethnopharmacology 93, 99104.Google Scholar
Salzet, M. & Stefano, G.B. (2002). The endocannabinoid system in invertebrates. Prostaglandins Leukotrienes and Essential Fatty Acids 66, 353361.Google Scholar
Schlicker, E. & Kathmann, M. (2001). Modulation of transmitter release via presynaptic cannabinoid receptors. Trends in Pharmacological Science 22, 565572.Google Scholar
Schlicker, E., Timm, J., & Göthert, M. (1996). Cannabinoid receptor-mediated inhibition of dopamine release in the retina. Naunyn-Schmiedebergs Archives of Pharmacology 354, 791795.Google Scholar
Showalter, V.M., Compton, D.R., Martin, B.R., & Abood, M.E. (1996). Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): Identification of cannabinoid receptor subtype selective ligands. Journal of Pharmacology and Experimental Therapeutics 278, 989999.Google Scholar
Stamer, W.D., Golightly, S.F., Hosohata, Y., Ryan, E.P., Porter, A.C., Varga, E., Noecker, R.J., Felder, C.C., & Yamamura, H.I. (2001). Cannabinoid CB(1) receptor expression, activation and detection of endogenous ligand in trabecular meshwork and ciliary process tissues. European Journal of Pharmacology 431, 277286.Google Scholar
Straiker, A., Stella, N., Piomelli, D., Mackie, K., Karten, H.J., & Maguire, G. (1999). Cannabinoid CB1 receptors and ligands in vertebrate retina: Localization and function of an endogenous signaling system. Proceedings of the National Academy of Sciences of the U.S.A. 96, 1456514570.Google Scholar
Straiker, A. & Sullivan, J.M. (2003). Cannabinoid receptor activation differentially modulates ion channels in photoreceptors of the tiger salamander. Journal of Neurophysiology 89, 26472654.Google Scholar
Street, I.P., Lin, H.K., Laliberte, F., Ghomashchi, F., Wang, Z., Perrier, H., Tremblay, N.M., Huang, Z., Weech, P.K., & Gelb, M.H. (1993). Slow- and tight-binding inhibitors of the 85-kDa human phospholipase A2. Biochemistry 32, 59355940.Google Scholar
Struik, M., Yazulla, S., & Kamermans, M. (2003). Cannabinoids modulate the cone light response in goldfish. Investigative Ophthalmology and Visual Science 44, E-Abstract 4168.Google Scholar
Sugiura, T., Kondo, S., Sukagawa, A., Nakane, S., Shinoda, A., Itoh, K., Yamashita, A., & Waku, K. (1995). 2-Arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain. Biochemical and Biophysical Research Communications 215, 8997.Google Scholar
Tsou, K., Noguerón, I., Muthian, S., Sañudo-Peña, M.C., Hillard, C.J., Deutsch, D.G., & Walker, J.M. (1998). Fatty acid amide hydrolase is located preferentially in large neurons in the rat central nervous system as revealed by immunohistochemistry. Neuroscience Letters 254, 14.Google Scholar
Ueda, N., Kurahashi, Y., Yamamoto, S., & Tokunaga, T. (1995). Partial purification and characterization of the porcine brain enzyme hydrolyzing and synthesizing anandamide. Journal of Biological Chemistry 270, 2382323827.Google Scholar
Varma, N., Carlson, G.C., Ledent, C., & Alger, B.E. (2001). Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. Journal of Neuroscience 21, RC188.Google Scholar
Watanabe, K., Ogi, H., Nakamura, S., Kayano, Y., Matsunaga, T., Yoshimura, H., & Yamamoto, I. (1998). Distribution and characterization of anandamide amidohydrolase in mouse brain and liver. Life Science 62, 12231229.Google Scholar
Wilson, R.I. & Nicoll, R.A. (2002). Neuroscience—Endocannabinoid signaling in the brain. Science 296, 678682.Google Scholar
Yamamura, H.I., Enna, S.J., & Kuhar, M.J. (1978). Neurotransmitter Receptor Binding. New York: Raven Press.
Yazulla, S., Studholme, K.M., McIntosh, H.H., & Deutsch, D.G. (1999). Immunocytochemical localization of cannabinoid CB1 receptor and fatty acid amide hydrolase in rat retina. Journal of Comparative Neurology 415, 8090.Google Scholar
Yazulla, S., Studholme, K.M., McIntosh, H.H., & Fan, S.F. (2000). Cannabinoid receptors on goldfish retinal bipolar cells: Electron-microscope immunocytochemistry and whole-cell recordings. Visual Neuroscience 17, 391401.Google Scholar
Yu, M., Ives, D., & Ramesha, C.S. (1997). Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2. Journal of Biological Chemistry 272, 2118121186.Google Scholar