Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T05:40:18.622Z Has data issue: false hasContentIssue false

Electrophysiological recordings in solitary photoreceptors from the retina of squid, Loligo pealei

Published online by Cambridge University Press:  02 June 2009

Enrico Nasi
Affiliation:
Department of Physiology, Boston University School of Medicine and Marine Biological Laboratory, Woods Hole
Maria Gomez
Affiliation:
Department of Physiology, Boston University School of Medicine and Marine Biological Laboratory, Woods Hole

Abstract

A protocol was developed to isolate enzymatically photoreceptors from the retina of the squid, Loligo pealei. The procedure routinely results in a high yield of intact cells. Examination of solitary photoreceptors under Nomarski optics revealed that the fine morphological features described in anatomical studies of retinal sections are retained. The distal segment is up to 250 μm long, 4–7 μm wide, covered in part by short microvilli; the inner segment and the cell body, with the initial portion of the axon, are also clearly discernible in solitary cells. Suction electrode measurements performed from the cell body confirmed that responsiveness to light survived cell isolation. Macroscopic membrane currents were measured using the whole-cell tight-seal technique, and the perforated-patch method. Step depolarizations of membrane voltage administered in the dark elicited a slowly activating, sustained outward current. Light stimulation evoked an inward current graded with stimulus intensity; the peak current could amply exceed 1000 pA. Intense photostimulation gave rise to a prolonged inward aftercurrent that lasted for tens of seconds. On-cell patch recording along the intermediate segment and most of the smooth areas of the distal segment showed a large incidence of silent patches, with the occasional presence of voltage-dependent channels. On the other hand, channel activity could be recorded more frequently from electrode placements near the apical tip of the cell, where the presence of microvilli could be confirmed visually. Some patches were unresponsive to voltage Stimulation applied in the dark but produced distinct bursts of channel openings after illumination. The feasibility of single-cell electrophysiology in isolated photoreceptors, together with the growing body of biochemical information on cephalopod preparations, makes squid an attractive model system to investigate the visual process in invertebrates using multiple experimental approaches.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R.G. & Hagins, W.A. (1960). The ionic composition of squid photoreceptors. Biological Bulletin 119, 300301.Google Scholar
Bacigalupo, J. & Lisman, J.E. (1983). Single channel currents activated by light in Limulus ventral photoreceptors. Nature 304, 268270.CrossRefGoogle ScholarPubMed
Bader, C.R., Macleish, P.R. & Schwartz, E.A. (1979). A voltage-clamp study of the light response in solitary rods of the tiger salamander. Journal of Physiology 296, 126.CrossRefGoogle ScholarPubMed
Baer, K.M. & Saibil, H.R. (1988). Light and GTP-activated hydrolysis of phosphatidylinositol bisphosphate in squid photoreceptor membranes. Journal of Biological Chemistry 263, 1720.CrossRefGoogle ScholarPubMed
Brown, A. & Lasek, R.J. (1990). The cytoskeleton of the squid giant axon. In Squid as Experimental Animals, ed Gilbert, D.L., Adelman, W.J. & Arnold, J.M., pp. 235302. New York: Plenum Press.CrossRefGoogle Scholar
Brown, J.E. & Blinks, J.R. (1974). Changes in intracellular free calcium concentration during illumination of invertebrate photoreceptors. Journal of General Physiology 64, 643665.CrossRefGoogle ScholarPubMed
Brown, J.E. & Rubin, L.J. (1984). A direct demonstration that inositol-trisphosphate induced an increase in intracellular calcium in Limulus photoreceptors. Biochemical and Biophysical Research Communications 125, 11371142.CrossRefGoogle ScholarPubMed
Brown, J.E., Rubin, L.J., Ghalayni, A.J., Tarver, A.P., Irvine, R.F., Berridge, M.J. & Anderson, R.E. (1984). Myoinositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature 311, 160163.CrossRefGoogle ScholarPubMed
Brown, J.E., Watkins, D.C. & Malbon, C.C. (1987). Light-induced changes in the content of inositol phosphates in squid (Loligo pealei). Biochemical Journal 247, 293297.CrossRefGoogle ScholarPubMed
Brown, J.E., Faddis, M. & Combs, A.Light does not induce an increase in cyclic-GMP content of squid or Limulus photoreceptors. Experimental Eye Research (in press).Google Scholar
Brown, J.E., Combs, A. & Ackermann, K. (1991). Light-induced GTPase activity and GTP[γs] binding in squid retinal photoreceptors. Visual Neuroscience 7, 589595.CrossRefGoogle ScholarPubMed
Brown, P.K. & Brown, P.S. (1958). Visual pigments of the octopus and cuttlefish. Nature 182, 12881290.CrossRefGoogle ScholarPubMed
Calhoon, R., Tsuda, M. & Ebrey, T.G. (1980). A light-activated GTPase from octopus photoreceptors. Biochemical and Biophysical Research Communications 94, 14521457.CrossRefGoogle ScholarPubMed
Clark, R.B. (1975). Components of the cephalopod electroretinogram. Experimental Eye Research 20, 499504.CrossRefGoogle ScholarPubMed
Clark, R.B. & Duncan, G. (1978). Two components of extracellularly recorded photoreceptor potentials in the cephalopod retina: differential effects of Na+, K+, and Ca2+. Biophysics of Structure and Mechanism 4, 263300.CrossRefGoogle Scholar
Cohen, A.I. (1973a). An ultrastructural analysis of the photoreceptors of the squid and their synaptic connections. I. Photoreceptive and non-synaptic regions of the retina. Journal of Comparative Neurology 147, 351378.CrossRefGoogle ScholarPubMed
Cohen, A.I. (1973a). An ultrastructural analysis of the photoreceptors of the squid and their synaptic connections. II. Intraretinal synapses and plexus. Journal of Comparative Neurology 147, 379398.CrossRefGoogle ScholarPubMed
Cook, N.J., Hanke, W. & Kaupp, U.B. (1987). Identification, purification, and functional reconstitution ot the cyclic GMP-dependent channel from rod photoreceptors. Proceedings of the National Academy of Sciences of the U.S.A. 84, 585589.CrossRefGoogle Scholar
Daw, N.W. & Pearlman, A.L. (1974). Pigment migration and adaptation in the eye of the squid, Loligo pealei. Journal of General Physiology 63, 2236.CrossRefGoogle ScholarPubMed
Dipolo, R. (1973). Calcium efflux from internally dialyzed squid giant axons. Journal of General Physiology 62, 575589.CrossRefGoogle ScholarPubMed
Duncan, G. & Pynsent, P.B. (1979). An analysis of the waveforms of photoreceptor potentials in the retina of the cephalopod Sepiola atlantica. Journal of Physiology 288, 171188.CrossRefGoogle Scholar
Fein, A., Payne, R., Corson, W.D., Berridge, M.J. & Irvine, R.F. (1984). Photoreceptor excitation and adaptation by inositol, 1, 4, 5-trisphosphate. Nature 311, 157160.CrossRefGoogle ScholarPubMed
Fesenko, E.E., Kolesnikov, S.S. & Lyubarsky, A.L. (1985). Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313, 310313.CrossRefGoogle ScholarPubMed
Fisher, E.J. & Patterson, J.A. (1987). Photoreceptor sizes in the retina of the squid, Alloteuthis subulata. Journal of Physiology 398, 97P.Google Scholar
Hagins, W.A. (1965). Electrical signs of information flow in photoreceptors. Cold Spring Harbor Symposia in Quantitative Biology 30, 403415.CrossRefGoogle ScholarPubMed
Hagins, W.A. & Liebman, P.A. (1962). Light-induced pigment migration in the squid retina. Biological Bulletin 123, 498.Google Scholar
Hagins, W.A., Zonana, H.V. & Adams, R.G. (1962). Local membrane current in the outer segments of squid photoreceptors. Nature 194, 844847.CrossRefGoogle ScholarPubMed
Hall, M.D., Hoon, M.A., Ryba, J.P., Pottinger, J.D.D., Keen, J.N., Saibil, H.R. & Findlay, B.C. (1991). Molecular cloning and primary structure of squid (Loligo forbesi) rhodopsin, a phospholipase C-directed G-protein-linked receptor. Biochemical Journal 274, 3540.CrossRefGoogle ScholarPubMed
Hamill, O.P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. (1981). Improved patch-clamp technique for high resolution current recording from cells and cell-free membrane patches. Pflügers Archivs 391 85100.CrossRefGoogle ScholarPubMed
Hara, T. & Hara, R. (1965). New photosensitive pigment found in the retina of the squid Ommastrephes. Nature 206, 13311334.CrossRefGoogle ScholarPubMed
Hartline, P.H. & Lange, G.D. (1977). Sinusoidal analysis of the electroretinogram of squid and octopus. Journal of Neurophysiology 40, 174187.CrossRefGoogle ScholarPubMed
Haynes, L.W., Kay, A.R. & Yau, K.W. (1986). Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane. Nature 321, 6670.CrossRefGoogle ScholarPubMed
Hillman, P., Hochstein, S. & Minke, B. (1983). Transduction in invertebrate photoreceptors: role of pigment bistability. Physiological Reviews 63, 668772.CrossRefGoogle ScholarPubMed
Horn, R. & Marty, A. (1988). Muscarinic activation of ionic currents measured by a new whole-cell recording method. Journal of General Physiology 92, 145159.CrossRefGoogle ScholarPubMed
Hubbard, R. & St. George, R.C.C. (1958). The rhodopsin system of the squid. Journal of General Physiology 41, 501528.CrossRefGoogle ScholarPubMed
Johnson, E.C., Robinson, P.R. & Lisman, J.E. (1986). Cyclic GMP is involved in the excitation of invertebrate photoreceptors. Nature 324, 468470.CrossRefGoogle ScholarPubMed
Kaupp, U.B., Niidome, T., Tanabe, T., Terada, S., Bonigk, W., Stuhmer, W., Cook, N.J., Kangawa, K., Matsuo, H., Hirose, T., Miyata, T. & Numa, S. (1989). Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342, 762766.CrossRefGoogle ScholarPubMed
Knox, B.E., Thompson, D.A. & Nasi, E. (1991). Expression of squid retinal mRNA in Xenopus oocytes. Biophysical Journal 59, 541a.Google Scholar
Lamb, T.D., Matthews, H.R. & Murphy, R.L.W. (1989). Cell capacitance limits the responses of cone photoreceptors isolated from the tiger salamander retina. Journal of Physiology 414, 52P.Google Scholar
Matthews, G. (1987). Single-channel recordings demonstrate that cGMP opens the light-sensitive ion channel of the rod photoreceptor. Proceedings of the National Academy of Sciences of the U.S.A. 84, 299302.CrossRefGoogle ScholarPubMed
Minke, B. & Armon, E. (1984). Activation of electrogenic Na-Ca exchange by light in fly photoreceptors. Vision Research 24, 109115.CrossRefGoogle ScholarPubMed
Nasi, E. (1991). Two light-dependent conductances in Lima rhabdomeric photoreceptors. Journal of General Physiology 97, 5572.CrossRefGoogle ScholarPubMed
Nasi, E. & Gomez, M. (1990a). Recordings from solitary photoreceptors and reconstituted membrane fractions of the squid. Biophysical Journal 57, 368a.Google Scholar
Nasi, E. & Gomez, M. (1990b). Light-dependent ion channels in dissociated photoreceptors of the scallop. Biophysical Journal 57, 372a.Google Scholar
O'Day, P.M. & Gray-Keller, M.P. (1989). Evidence for electrogenic Na+/Ca2+ exchange in Limulus ventral photoreceptors. Journal of General Physiology 93, 473492.CrossRefGoogle ScholarPubMed
Oldenburg, K.R. & Hubbel, W.L. (1990). Invertebrate rhodopsin cleavage by an endogenous calcium activated protease. Experimental Eye Research 51, 463472.CrossRefGoogle ScholarPubMed
Ovchinnikov, Yu.-A., Abdulaev, N.G., Zolotarev, A.S., Artamonov, I.D., Bespalov, I.A., Dergachev, A.E. & Tsuda, M. (1988). Octopus rhodopsin. Amino acid sequence deduced from cDNA. FEBS Letters 232, 6972.CrossRefGoogle Scholar
Ozaki, K., Terakita, A., Hara, R. & Hara, T. (1987). Isolation and characterization of a retinal-binding protein from the squid retina. Vision Research 11, 10571070.CrossRefGoogle Scholar
Pant, H.C., Terakawa, S. & Gainer, H. (1979). A calcium activated protease in squid axoplasm. Journal of Neurochemistry 32, 99102.CrossRefGoogle ScholarPubMed
Paulsen, R. & Hoppe, I. (1978). Light-activated phosphorylation of cephalopod rhodopsin. FEBS Letters 96, 5558.CrossRefGoogle ScholarPubMed
Payne, R., Corson, D.W., Fein, A. & Berridge, M.J. (1986). Excitation and adaptation of Limulus ventral photoreceptors by inositol 1, 4, 5-trisphosphate result from a rise in intracellular calcium. Journal of General Physiology 88, 127142.CrossRefGoogle ScholarPubMed
Pinto, L.H. & Brown, J.E. (1977). Intracellular recordings from photoreceptors of the squid (Loligo pealii). Journal of Comparative Physiology 122, 241250.CrossRefGoogle Scholar
Saibil, H.R. (1984). A light-stimulated increase of cyclic GMP in squid photoreceptors. FEBS Letters 168, 213216.CrossRefGoogle ScholarPubMed
Saibil, H.R. & Michel-Villaz, M. (1984). Squid rhodopsin and GTP-binding protein crossreact with vertebrate photoreceptor enzymes. Proceedings of the National Academy of Sciences of the U.S.A. 81, 51115115.CrossRefGoogle ScholarPubMed
Saibil, H. & Hewat, E. (1987). Ordered transmembrane and extracellular structure in squid photoreceptor microvilli. Journal of Cell Biology 105, 1928.CrossRefGoogle ScholarPubMed
Seki, T. (1984). Metaretinochrome in membranes as an effective donor of 11-cis retinal for the synthesis of squid rhodopsin. Journal of General Physiology 84, 4962.CrossRefGoogle ScholarPubMed
Stryer, L. (1986). Cyclic GMP cascade of vision. Annual Review of Neuroscience 9, 87119.CrossRefGoogle ScholarPubMed
Szuts, E.Z., Wood, S.F., Reid, M.A. & Fein, A. (1986). Light stimulates the rapid formation of inositol trisphosphate in squid retinas. Biochemical Journal 240, 929932.CrossRefGoogle ScholarPubMed
Tanaka, J.C., Furman, R.E., Cobbs, W.H. & Mueller, P. (1987). Incorporation of a retinal rod cGMP-dependent conductance into planar bilayers. Proceedings of the National Academy of Sciences of the U.S.A. 84, 724728.CrossRefGoogle ScholarPubMed
Tasaki, I. & Takenaka, T. (1964). Effects of various potassium salts and proteases upon excitability of intracellularly perfused squid giant axons. Proceedings of the National Academy of Sciences of the U.S.A. 52, 804810.CrossRefGoogle ScholarPubMed
Terakita, A., Hara, R. & Hara, T. (1989). Retinal binding protein as a shuttle for retinal in the rhodopsin retinochrome system of the squid visual cells. Vision Research 29, 639652.CrossRefGoogle ScholarPubMed
Tomita, T. (1968). Electrical responses of single photoreceptors. Proceedings of the IEEE 56, 10151023.CrossRefGoogle Scholar
Tsuda, M., Tsuda, T., Terayama, Y., Fukada, Y., Akino, T., Yamanaka, G., Stryer, L., Katada, T., Ui., M. & Ebrey, T. (1986). Kinship of cephalopod photoreceptor G-protein with vertebrate transducin. FEBS Letters 198, 510.CrossRefGoogle Scholar
Vandenberg, C.A. & Montal, M. (1984). Light-regulated biochemical events in invertebrate photoreceptors. 1. Light-activated guanosinetriphosphate, guanine nucleotide binding, and cholera toxin catalyzed labelling of squid photoreceptor membranes. Biochemistry 23, 23392347.CrossRefGoogle ScholarPubMed
Weeks, F.I. & Duncan, G. (1974). Photoreception by a cephalopod retina: response dynamics. Experimental Eye Research 19, 493509.CrossRefGoogle ScholarPubMed
Wood, S.F., Szuts, E.Z. & Fein, A. (1989). Inositol trisphosphate production in squid photoreceptors: activation by light, aluminum fluoride, and guanine nucleotides. Journal of Biological Chemistry 264, 1297012976.CrossRefGoogle ScholarPubMed
Yamamoto, T., Tasaki, K., Sugawara, Y. & Tonosaki, A. (1965). Fine structure of the octopus retina. Journal of Cell Biology 25, 345359.CrossRefGoogle ScholarPubMed
Young, J.Z. (1963). Light- and dark-adaptation in the eyes of some cephalopods. Proceedings of the Zoological Society (London) 140, 255272.CrossRefGoogle Scholar
Zimmerman, A.L. & Baylor, D.A. (1986). Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores. Nature 321, 7072.CrossRefGoogle ScholarPubMed
Zonana, H.V. (1961). Fine structure of the squid retina. Bulletin of Johns Hopkins Hospital 109, 185205.Google Scholar