Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T00:36:39.929Z Has data issue: false hasContentIssue false

Early diagnosis of amblyopia

Published online by Cambridge University Press:  16 April 2018

DAVID HUNTER*
Affiliation:
Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
SUSAN COTTER
Affiliation:
Southern California College of Optometry, Marshall B. Ketchum University, Fullerton, California
*
*Address correspondence to: David Hunter. E-mail: [email protected]

Abstract

Amblyopia can be improved or eliminated more easily when treated early in life. Because amblyopia in older children is generally less responsive to treatment (Holmes et al., 2011), there is a premium on the early identification of amblyopia and its risk factors and the subsequent treatment thereof. Clinical preference is to institute treatment in children before 7 years of age when an optimal visual outcome is typically easier to obtain.

Type
Perspective
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Academy of Ophthalmology Pediatric Ophthalmology/Strabismus Panel (2012). Preferred Practice Pattern Guidelines. Esotropia and Exotropia. San Francisco, CA: American Academy of Ophthalmology. Available at: www.aao.org/ppp (accessed February 18, 2017).Google Scholar
Anker, S., Atkinson, J., Braddick, O., Nardini, M. & Ehrlich, D. (2004). Noncycloplegic refractive screening can identify infants whose visual outcome at 4 years is improved by spectacle correction. Strabismus 12, 227245.Google Scholar
Atkinson, J., Braddick, O., Bobier, B., Anker, S., Ehrlich, D., King, J., Watson, P. & Moore, A. (1996). Two infant vision screening programmes: Prediction and prevention of strabismus and amblyopia from photo- and videorefractive screening. Eye 10, 189198.Google Scholar
Atkinson, J., Anker, S., Nardini, M., Braddick, O., Hughes, C., Rae, S., Wattam-Bell, J. & Atkinson, S. (2002). Infant vision screening predicts failures on motor and cognitive tests up to school age. Strabismus 10, 187198.CrossRefGoogle ScholarPubMed
Atkinson, J., Nardini, M., Anker, S., Braddick, O., Hughes, C. & Rae, S. (2005). Refractive errors in infancy predict reduced performance on the movement assessment battery for children at 3 1/2 and 5 1/2 years. Developmental Medicine & Child Neurology 47, 243251.CrossRefGoogle Scholar
Atkinson, J., Braddick, O., Nardini, M. & Anker, S. (2007). Infant hyperopia: Detection, distribution, changes and correlates-outcomes from the Cambridge infant screening programs. Optometry and Vision Science 84, 8496.CrossRefGoogle ScholarPubMed
Barrett, B.T., Bradley, A. & Candy, T.R. (2013). The relationship between anisometropia and amblyopia. Progress in Retinal and Eye Research 36, 120158.CrossRefGoogle ScholarPubMed
Birch, E., Williams, C., Hunter, J. & Lapa, M.C. (1997). Random dot stereoacuity of preschool children. ALSPAC “children in focus” study team. Journal of Pediatric Ophthalmology and Strabismus 34, 217222.CrossRefGoogle Scholar
Birch, E.E. (2003). Marshall parks lecture. Binocular sensory outcomes in accommodative ET. Journal of AAPOS 7, 369373.Google Scholar
Ciuffreda, K., Levi, D. & Selenow, A. (1991). Amblyopia: Basic and Clinical Aspects. Philadelphia: JB Lippincott Company.Google Scholar
Cotter, S.A., Cyert, L.A., Miller, J.M. & Quinn, G.E. (2015). Vision screening for children 36 to <72 months: Recommended practices. Optometry and Vision Science 92, 616.Google Scholar
Cotter, S.A., Tarczy-Hornoch, K., Song, E., Lin, J., Borchert, M., Azen, S.P. & Varma, R. (2009). Fixation preference and visual acuity testing in a population-based cohort of preschool children with amblyopia risk factors. Ophthalmology 116, 145153.CrossRefGoogle Scholar
Cotter, S.A., Tarczy-Hornoch, K., Wang, Y., Azen, S.P., Dilauro, A., Borchert, M. & Varma, R. (2007). Visual acuity testability in African-American and Hispanic children: The multi-ethnic pediatric eye disease study. American Journal of Ophthalmology 144, 663667.Google Scholar
Cotter, S.A., Varma, R., Tarczy-Hornoch, K., McKean-Cowdin, R., Lin, J., Wen, G., Wei, J., Borchert, M., Azen, S.P., Torres, M., Tielsch, J.M., Friedman, D.S., Repka, M.X., Katz, J., Ibironke, J. & Giordano, L. (2011). Risk factors associated with childhood strabismus: The multi-ethnic pediatric eye disease and Baltimore pediatric eye disease studies. Ophthalmology 118, 22512261.CrossRefGoogle ScholarPubMed
de Koning, H.J., Groenewoud, J.H., Lantau, V.K., Tjiam, A.M., Hoogeveen, W.C., de Faber, J.T., Juttmann, R.E. & Simonsz, H.J. (2013). Effectiveness of screening for amblyopia and other eye disorders in a prospective birth cohort study. Journal of Medical Screening 20, 6672.Google Scholar
Donahue, S.P., Arthur, B., Neely, D.E., Arnold, R.W., Silbert, D. & Ruben, J.B. (2013). Guidelines for automated preschool vision screening: A 10-year, evidence-based update. Journal of AAPOS 17, 48.Google Scholar
Friedman, D.S., Katz, J., Repka, M.Z., Giordano, L., Ibironke, J., Hawse, P. & Tielsch, J.M. (2008). Lack of concordance between fixation preference and HOTV optotype visual acuity in preschool children: The Baltimore pediatric eye disease study. Ophthalmology 115, 17961799.Google Scholar
Friedman, D.S., Repka, M.X., Katz, J., Giordano, L., Ibironke, J., Hawse, P. & Tielsch, J.M. (2009). Prevalence of amblyopia and strabismus in white and African American children aged 6 through 71 months the Baltimore pediatric eye disease study. Ophthalmology 116, 21282134.e1-2.Google Scholar
Gonzalez, E.G., Wong, A.M., Niechwiej-Szwedo, E., Tarita-Nistor, L. & Steinbach, M.J. (2012). Eye position stability in amblyopia and in normal binocular vision. Investigative Ophthalmology & Visual Science 53, 53865394.Google Scholar
Gordon, M.O., Torri, V., Miglior, S., Beiser, J.A., Floriani, I., Miller, J.P., Gao, F., Adamsons, I., Poli, D., D’Agostino, R.B. & Kass, M.A. (2007). Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology 114, 1019.Google Scholar
Groenewoud, J.H., Tjiam, A.M., Lantau, V.K., Hoogeveen, W.C., de Faber, J.T., Juttmann, R.E., de Koning, H.J. & Simonsz, H.J. (2010). Rotterdam AMblyopia screening effectiveness study: Detection and causes of amblyopia in a large birth cohort. Investigative Ophthalmology & Visual Science 51, 34763484.CrossRefGoogle Scholar
Hartmann, E.E., Block, S.S. & Wallace, D.K. (2015). Vision and eye health in children 36 to <72 months: Proposed data system. Optometry and Vision Science 92, 2430.Google Scholar
Hess, R.F. (1979). Contrast sensitivity assessment of functional amblyopia in humans. Transactions of the Ophthalmological Societies of the United Kingdom 99, 391397.Google Scholar
Holmes, J.M., Lazar, E.L., Melia, B.M., Astle, W.F., Dagi, L.R., Donahue, S.P., Frazier, M.G., Hertle, R.W., Repka, M.X., Quinn, G.E. & Weise, K.K. (2011). Effect of age on response to amblyopia treatment in children. Archives of Ophthalmology 129, 14511457.CrossRefGoogle ScholarPubMed
Jones, P.R., Kalwarowsky, S., Atkinson, J., Braddick, O.J. & Nardini, M. (2014). Automated measurement of resolution acuity in infants using remote eye-tracking. Investigative Ophthalmology & Visual Science 55, 81028110.Google Scholar
Jones-Jordan, L., Wang, X., Scherer, R.W. & Mutti, D.O. (2014). Spectacle correction versus no spectacles for prevention of strabismus in hyperopic children. Cochrane Database of Systematic Reviews. 8:CD007738. doi:10.1002/14651858.CD007738.pub2Google Scholar
Jost, R.M., Stager, D. Jr., Dao, L., Katz, S., McDonald, R. & Birch, E.E. (2015). High specificity of the Pediatric Vision Scanner in a private pediatric primary care setting. Journal of AAPOS 19, 521525.Google Scholar
Jost, R.M., Yanni, S.E., Beauchamp, C.L., Stager, D.R. Sr., Stager, D. Jr., Dao, L. & Birch, E.E. (2014). Beyond screening for risk factors: Objective detection of strabismus and amblyopia. JAMA Ophthalmology 132, 814820.CrossRefGoogle ScholarPubMed
Kemper, A.R. & Clark, S.J. (2006). Preschool vision screening in pediatric practices. Clinical Pediatrics 45, 263266.Google Scholar
Kulp, M.T., Ciner, E., Maguire, M., Moore, B., Pentimonti, J., Pistilli, M., Cyert, L., Candy, T.R., Quinn, G. & Ying, G.S. (2016). Uncorrected hyperopia and preschool early literacy: Results of the vision in preschoolers–hyperopia in preschoolers (VIP–HIP) study. Ophthalmology 123, 681689.Google Scholar
Levi, D.M. (1998). The Glenn A. Fry award lecture: The “spatial grain” of the amblyopic visual system. American Journal of Optometry and Physiological Optics 65, 767786.Google Scholar
Levi, D.M., McKee, S.P. & Movshon, J.A. (2011). Visual deficits in anisometropia. Vision Research 51, 4857.CrossRefGoogle ScholarPubMed
Li, J., Thompson, B., Lam, C.S., Deng, D., Chan, L.Y., Maehara, G., Woo, G.C., Yu, M. & Hess, R.F. (2011). The role of suppression in amblyopia. Investigative Ophthalmology & Visual Science 52, 41694176.CrossRefGoogle ScholarPubMed
Loudon, S.E., Rook, C.A., Nassif, D.S., Piskun, N.V. & Hunter, D.G. (2011). Rapid, high-accuracy detection of strabismus and amblyopia using the pediatric vision scanner. Investigative Ophthalmology & Visual Science 52, 50435048.CrossRefGoogle ScholarPubMed
McKean-Cowdin, R., Cotter, S.A., Tarczy-Hornoch, K., Wen, G., Kim, J., Borchert, M. & Varma, R. (2013). Prevalence of amblyopia or strabismus in asian and non-Hispanic white preschool children: Multi-ethnic pediatric eye disease study. Ophthalmology 120, 21172124.Google Scholar
McKee, S.P., Levi, D.M. & Movshon, J.A. (2003). The pattern of visual deficits in amblyopia. Journal of Vision 3, 380405.Google Scholar
MEPEDS (2008). Prevalence of amblyopia and strabismus in African American and Hispanic children ages 6 to 72 months the multi-ethnic pediatric eye disease study. Ophthalmology 115, 12291236.e1.Google Scholar
Narasimhan, S., Harrison, E.R. & Giaschi, D.E. (2012). Quantitative measurement of interocular suppression in children with amblyopia. Vision Research 66, 110.Google Scholar
Nathan, N.R. & Donahue, S.P. (2011). Modification of Plusoptix referral criteria to enhance sensitivity and specificity during pediatric vision screening. Journal of AAPOS 15, 551555.Google Scholar
Roch-Levecq, A.C., Brody, B.L., Thomas, R.G. & Brown, S.I. (2008). Ametropia, preschoolers’ cognitive abilities, and effects of spectacle correction. Archives of Ophthalmology 126, 252258.Google Scholar
Rutstein, R.P., Cogen, M.S., Cotter, S.A., Daum, K.M., Mozlin, R.L. & Ryan, J.M. (1995). Optometric clinical practice guideline. Care of the Patient with Strabismus: Esotropia & Exotropia. St. Louis: American Optometric Association. Available at: www.aoa.org/documents/optometrists/CPG-12.pdf (accessed February 18, 2017).Google Scholar
Schmidt, P., Maguire, M., Dobson, V., Quinn, G., Ciner, E., Cyert, L., Kulp, M.T., Moore, B., Orel-Bixler, D., Redford, M. & Ying, G.S. (2004). Comparison of preschool vision screening tests as administered by licensed eye care professionals in the Vision in Preschoolers Study. Ophthalmology 111, 637650.Google Scholar
Simon, J.W., Siegfried, J.B., Mills, M.D., Calhoun, J.H. & Gurland, J.E. (2004). A new visual evoked potential system for vision screening in infants and young children. Journal of AAPOS 8, 549554.CrossRefGoogle ScholarPubMed
Sireteanu, R., Fronius, M. & Katz, B. (1990). A perspective on psychophysical testing in children. Eye 4, 794801.Google Scholar
Sokol, S., Hansen, V.C., Moskowitz, A., Greenfield, P. & Towle, V.L. (1983). Evoked potential and preferential looking estimates of visual acuity in pediatric patients. Ophthalmology 90, 552562.Google Scholar
Solebo, A.L., Cumberland, P. & Rahi, J.S. (2015). Whole-population vision screening in children aged 4–5 years to detect amblyopia. The Lancet 385, 23082319.Google Scholar
Tarczy-Hornoch, K., Lin, J., Deneen, J., Cotter, S.A., Azen, S.P., Borchert, M.S., Wang, Y. & Varma, R. (2008). Stereoacuity testability in African-American and Hispanic pre-school children. Optometry and Vision Science 85, 158163.CrossRefGoogle ScholarPubMed
Tarczy-Hornoch, K., Varma, R., Cotter, S.A., McKean-Cowdin, R., Lin, J.H., Borchert, M.S., Torres, M., Wen, G., Azen, S.P., Tielsch, J.M., Friedman, D.S., Repka, M.X., Katz, J., Ibironke, J. & Giordano, L. (2011). Risk factors for decreased visual acuity in preschool children: The multi-ethnic pediatric eye disease and Baltimore pediatric eye disease studies. Ophthalmology 118, 22622273.Google Scholar
Vision in Preschoolers Study Group (2004). Preschool visual acuity screening with HOTV and lea symbols: Testability and between-test agreement. Optometry and Vision Science 81, 678683.Google Scholar
Vision in Preschoolers Study Group (2005). Preschool vision screening tests administered by nurse screeners compared with lay screeners in the vision in preschoolers study. Investigative Ophthalmology & Visual Science 46, 26392648.Google Scholar
Weakley, D.R. Jr. (2001). The association between nonstrabismic anisometropia, amblyopia, and subnormal binocularity. Ophthalmology 108, 163171.Google Scholar
Weakley, D.R. Jr. & Birch, E. (2000). The role of anisometropia in the development of accommodative esotropia. Transactions of the American Ophthalmological Society 98, 7176; discussion 76–79.Google Scholar
Webber, A.L., Wood, J.M., Gole, G.A. & Brown, B. (2008). The effect of amblyopia on fine motor skills in children. Investigative Ophthalmology & Visual Science 49, 594603.CrossRefGoogle ScholarPubMed
Williams, C.E.M., Harrad, R.A., Harvey, I. & Sparrow, J.M. (2001). Screening for amblyopia in pre-school children: Results of a population-based, randomised controlled trial. Ophthalmic Epidemiology 8, 279295.Google Scholar
Williams, C.E.M., Northstone, K., Harrad, R.A., Sparrow, J.M., Harvey, I. & ALSPAC Study Team, (2002). Amblyopia treatment outcomes after screening before or at age 3 years: Follow up from a randomised trial. British Medical Journal 324, 1549.Google Scholar