We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://mc.manuscriptcentral.com/trhg.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Academic Development Study of Australian Twins was established in 2012 with the purpose of investigating the relative influence of genes and environments in literacy and numeracy capabilities across two primary and two secondary school grades in Australia. It is the first longitudinal twin project of its kind in Australia and comprises a sample of 2762 twin pairs, 40 triplet sets and 1485 nontwin siblings. Measures include standardized literacy and numeracy test data collected at Grades 3, 5, 7 and 9 as part of the National Assessment Program: Literacy and Numeracy. A range of demographic and behavioral data was also collected, some at multiple longitudinal time points. This article outlines the background and rationale for the study and provides an overview for the research design, sample and measures collected. Findings emerging from the project and future directions are discussed.
By merging analytical approaches from the fields of historiometrics and behavior genetics, a social pedigree-based estimate of the heritability of eminence is generated. Eminent individuals are identified using the Pantheon dataset. A single super-pedigree, comprised of four prominent and interrelated families (including the Wedgwood–Darwin, Arnold–Huxley, Keynes-Baha’u’lláh, and Benn-Rutherford pedigrees) is assembled, containing 30 eminent individuals out of 301 in total. Each eminent individual in the super-pedigree is assigned a relative measure of historical eminence (scaled from 1 to 100) with noneminent individuals assigned a score of 0. Utilizing a Bayesian pedigree-based heritability estimation procedure employing an informed prior, an additive heritability of eminence of .507 (95% CI [.434, .578]) was found. The finding that eminence is additively heritable is consistent with expectations from behavior-genetic studies of factors that are thought to underlie extraordinary accomplishment, which indicate that they are substantially additively heritable. Owing to the limited types of intermarriage present in the data, it was not possible to estimate the impact of nonadditive genetic contributions to heritability. Gene-by-environment interactions could not be estimated in the present analysis either; therefore, the finding that eminence is simply a function of additive genetic and nonshared environmental variance should be interpreted cautiously.
Our current society is characterized by an increased availability of industrially processed foods with high salt, fat and sugar content. How is it that some people prefer these unhealthy foods while others prefer more healthy foods? It is suggested that both genetic and environmental factors play a role. The aim of this study was to (1) identify food preference clusters in the largest twin-family study into food preference to date and (2) determine the relative contribution of genetic and environmental factors to individual differences in food preference in the Netherlands. Principal component analysis was performed to identify the preference clusters by using data on food liking/disliking from 16,541 adult multiples and their family members. To estimate the heritability of food preference, the data of 7833 twins were used in structural equation models. We identified seven food preference clusters (Meat, Fish, Fruits, Vegetables, Savory snacks, Sweet snacks and Spices) and one cluster with Drinks. Broad-sense heritability (additive [A] + dominant [D] genetic factors) for these clusters varied between .36 and .60. Dominant genetic effects were found for the clusters Fruit, Fish (males only) and Spices. Quantitative sex differences were found for Meat, Fish and Savory snacks and Drinks. To conclude, our study convincingly showed that genetic factors play a significant role in food preference. A next important step is to identify these genes because genetic vulnerability for food preference is expected to be linked to actual food consumption and different diet-related disorders.
The aim of the study was to examine the Family and School Psychosocial Environment (FSPE) questionnaire in relation to a possible genotype–environment correlation and genetic mediation between the FSPE variables and personality variables, assessed by the Junior Eysenck Personality Questionnaire. A sample of 506 Swedish children aged 10–20 years from 253 families were recruited via the Swedish state population and address register and SchoolList.Eu. The children were divided into 253 pairs: 46 monozygotic twin pairs, 42 dizygotic twin pairs, 140 pairs of full siblings and 25 pairs of half-siblings. The behavioral genetic analysis showed that both FSPE factors, Warmth and Conflicts, may be partly influenced by genetic factors (suggesting genotype–environment correlation) and that nonadditive genetic factors may mediate the relationship between FSPE factors and psychoticism/antisocial personality (P). An indication of a special shared monozygotic twin environment was found for P and Lie/social desirability, but based on prior research findings this factor may have a minor influence on P and L. P and L were negatively correlated, and the relationship seems to be partly mediated by nonadditive genetic factors. Nonshared environment and measurement errors seem to be the most influential mediating factors, but none of the cross-twin cross-dimension correlations suggest a common shared environmental mediating factor.
We compare the power of two different approaches to detect passive genotype–environment (GE) covariance originating from cultural and genetic transmission operating simultaneously. In the traditional nuclear twin family (NTF) design, cultural transmission is estimated from the phenotypic covariance matrices of the mono- and dizygotic twins and their parents. Here, phenotyping is required in all family members. A more recent method is the transmitted–nontransmitted (T–NT) allele design, which exploits measured genetic variants in parents and offspring to test for effects of nontransmitted alleles from parents. This design requires two-generation genome-wide data and a powerful genome-wide association study (GWAS) for the phenotype in addition to phenotyping in offspring. We compared the power of both designs. Using exact data simulation, we demonstrate three points: how the power of the T–NT design depends on the predictive power of polygenic risk scores (PRSs); that when the NTF design can be applied, its power to detect cultural transmission and GE covariance is high relative to T–NT; and that, given effect sizes from contemporary GWAS, adding PRSs to the NTF design does not yield an appreciable increase in the power to detect cultural transmission. However, it may be difficult to collect phenotypes of parents and the possible importance of gene × age interaction, and secular generational effects can cause complications for many important phenotypes. The T–NT design avoids these complications.
Mortality risk is known to be associated with many physiological or biochemical risk factors, and polygenic risk scores (PRSs) may offer an additional or alternative approach to risk stratification. We have compared the predictive value of common biochemical tests, PRSs and information on parental survival in a cohort of twins and their families. Common biochemical test results were available for up to 13,365 apparently healthy men and women, aged 17−93 years (mean 49.0, standard deviation [SD] 13.7) at blood collection. PRSs for longevity were available for 14,169 study participants and reported parental survival for 25,784 participants. A search for information on date and cause of death was conducted through the Australian National Death Index, with median follow-up of 11.3 years. Cox regression was used to evaluate associations with mortality from all causes, cancers, cardiovascular diseases and other causes. Linear relationships with all-cause mortality were strongest for C-reactive protein, gamma-glutamyl transferase, glucose and alkaline phosphatase, with hazard ratios (HRs) of 1.16 (95% CI [1.07, 1.24]), 1.15 (95% CI 1.04–1.21), 1.13 (95% CI [1.08, 1.19]) and 1.11 (95% CI [1.05, 1.88]) per SD difference, respectively. Significant nonlinear effects were found for urea, uric acid and butyrylcholinesterase. Lipid risk factors were not statistically significant for mortality in our cohort. Family history and PRS showed weaker but significant associations with survival, with HR in the range 1.05 to 1.09 per SD difference. In conclusion, biochemical tests currently predict long-term mortality more strongly than genetic scores based on genotyping or on reported parental survival.
Research has emphasized the genetic basis of individual differences in body mass index (BMI); however, genetic factors cannot explain the rapid rise of obesity. Eating behaviors have been stipulated to be the behavioral expression of genetic risk in an obesogenic environment. In this study, we decompose variation and covariation between three key eating behaviors and BMI in a sample of 698 participants, consisting of 167 monozygotic, 150 dizygotic complete same-sex female twins and 64 incomplete pairs from a population-based twin registry in the southeast of Spain, The Murcia Twin Registry. Phenotypes were emotional eating, uncontrolled eating and cognitive restraint, measured by the Three Factor Eating Questionnaire and objectively measured BMI. Variation in eating behaviors was driven by nonshared environmental factors (range: 56%−65%), whereas shared environmental and genetic factors were secondary. All three eating behaviors were correlated with BMI (r = .19–.25). Nonshared environmental factors explained the covariations (Emotional eating–Uncontrolled eating: rE = .54, 95% CI [.43, .64]; BMI–Cognitive restraint: rE = .15, 95% CI [.01, .28]). In contrast to BMI, individual differences in eating behaviors are mostly explained by nonshared environmental factors, which also accounted for the phenotypic correlation between eating behaviors and BMI. Due to the sample size, analyses were underpowered to detect contributions of additive genetic or shared environmental factors to variation and covariation of the phenotypes. Although more research is granted, these results support that eating behaviors could be viable intervention targets to help individuals maintain a healthy weight.
The Wisconsin Twin Project encompasses nearly 30 years of longitudinal research that spans infancy to early adulthood. The twin sample was recruited from statewide birth records for birth cohorts 1989–2004. We summarize early recruitment, assessment, retention and recently completed twin neuroimaging studies. In addition to the focal twins, longitudinal data were also collected from two parents and nontwin siblings. Our adolescent and young adult neuroimaging sample (N = 600) completed several previous behavioral and environmental assessments, beginning shortly after birth. The extensive phenotyping is meant to support a range of empirical investigations with potentially differing theoretical perspectives.