Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T13:13:12.789Z Has data issue: false hasContentIssue false

Differential Age and Sex Effects in the Assessment of Major Depression: A Population-Based Twin Item Analysis of the DSM Criteria

Published online by Cambridge University Press:  21 February 2012

Steven H. Aggen*
Affiliation:
Virginia Institute for Psychiatric and Behavioral Genetics, Medical College of Virginia, Virginia Commonwealth University, Richmond, United States of America
Kenneth S. Kendler
Affiliation:
Virginia Institute for Psychiatric and Behavioral Genetics, Medical College of Virginia, Virginia Commonwealth University, Richmond, United States of America
Thomas S. Kubarych
Affiliation:
Virginia Institute for Psychiatric and Behavioral Genetics, Medical College of Virginia, Virginia Commonwealth University, Richmond, United States of America
Michael C. Neale
Affiliation:
Virginia Institute for Psychiatric and Behavioral Genetics, Medical College of Virginia, Virginia Commonwealth University, Richmond, United States of America
*
ADDRESS FOR CORRESPONDENCE: Steven H. Aggen PhD, Department of Psychiatry, Virginia Commonwealth University, PO Box 980126, Richmond, VA 23298-0126. E-mail: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A twin item factor analytic model was developed to test for the presence of noninvariant age, sex, and age by sex interaction effects on the individual DSM-III-R criteria for major depression (MD). Based on 1-year reports, six of the nine MD criteria and duration requirement were found to have covariate factor loading and/or threshold effects that significantly deviated from their corresponding factor level expectations. A significant age effect was found for the binary duration variable factor loading. The ‘loss of interest’, ‘weight problems’ and ‘psychomotor problems’ criteria all displayed forms of threshold only effects. ‘Depressed mood’, ‘fatigue’, and ‘feeling worthless’ had more complex patterns that included both factor loading and threshold effects. A significant factor age by sex interaction effect indicating an increasing female mean difference with age was found to be largely associated with the presence of differential threshold covariate effects. Disagreement between estimated factor scores and DSM-derived affected vs. unaffected classification was ∼ 1.3%. Status on the duration requirement was found to be the one feature common to all discrepancies. The MD criteria set provided maximum information for calibrating MD factor scores in the scale region where discrepancies occurred. The dimensional modeling results are discussed in the broader context of epidemiological research and clinical assessment of major depression.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

References

Aggen, S. H., Neale, M. C., & Kendler, K. S. (2005). DSM criteria for major depression: Evaluating symptom patterns using latent-trait item response models. Psychological Medicine, 35, 475487.CrossRefGoogle ScholarPubMed
Aggen, S. H., Neale, M. C., Røysamb, E., Reichborn-Kjennerud, T., & Kendler, K. S. (2009). A psychometric evaluation of the DSM-IV borderline personality disorder criteria: age and sex moderation of criterion functioning. Psychological Medicine, 39, 19671978.CrossRefGoogle ScholarPubMed
Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317332.CrossRefGoogle Scholar
Akaike, H. (1981). Likelihood of a model and information criteria. Journal of Econometrics, 16, 314.CrossRefGoogle Scholar
American Psychiatric Association (1987). Diagnostic and Statistical Manual of Mental Disorders, Revised Third Edition. Washington, DC: American Psychiatric Association.Google Scholar
American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders, (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
Beauchaine, T. P. (2003). Taxometrics and developmental psychopathology. Development and Psychopathology, 15, 501527.CrossRefGoogle ScholarPubMed
Bebbington, P. E., Dunn, G., Jenkins, R., Lewis, G., Brugha, T. S., Farrall, M., & Meltzer, H. (1998). The influence of age and sex on the prevalence of depressive conditions: Report from the national survey of psychiatry morbidity. Psychological Medicine, 28, 919.CrossRefGoogle Scholar
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238246.CrossRefGoogle ScholarPubMed
Blazer, D. G., Kessler, R. C., McGonagle, K. A., & Swartz, M. S. (1994). The prevalence and distribution of major depression in a National Community Sample: The National Comorbidity Survey. American Journal of Psychiatry, 151, 979986.Google Scholar
Bock, R. D. & Aitkin, M. (1981). Marginal maximum-likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443459.CrossRefGoogle Scholar
Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-Information item factor analysis. Applied Psychological Measurement, 12, 261280.CrossRefGoogle Scholar
Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53, 605634.CrossRefGoogle ScholarPubMed
Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2003). The theoretical status of latent variables. Psychological Review, 110, 203219.CrossRefGoogle ScholarPubMed
Cheung, G. W. & Rensvold, R. B. (1999). Testing factorial invariance across groups: A reconceptualization and proposed new method. Journal of Management, 25, 127.CrossRefGoogle Scholar
Drasgow, F. & Kanfer, R. (1985). Equivalence of psychological measurement in heterogeneous populations. Journal of Applied Psychology, 70, 662680.CrossRefGoogle ScholarPubMed
Estabrook, R. & Neale, M. C. (2011). A Comparison of Factor Score Estimation Methods in the Presence of Missing Data. (submitted).Google Scholar
Hattie, J. (1984). An empirical study of various indices for determining unidimensionality. Multivariate Behavioral Research, 19, 4978.CrossRefGoogle ScholarPubMed
Holland, P. W. & Wainer, H. (1993). Differential item functioning. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Horn, J. L. & McArdle, J. J. (1992). A practical and theoretical guide to measurement invariance in aging research. Experimental Aging Research, 18, 117144.CrossRefGoogle ScholarPubMed
Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C., & Eaves, L. J. (1993). A longitudinal twin study of 1-year prevalence of major depression in women. Archives of General Psychiatry, 50, 843852.CrossRefGoogle ScholarPubMed
Kendler, K. S. & Prescott, C. A. (2006). Genes, environment, and psychopathology: Understanding the causes of psychiatric and substance use disorders. New York: Guilford Press.Google Scholar
Kendler, K. S. & Prescott, C. A. (1999). A population-based twin study of lifetime major depression in men and women. Archives of General Psychiatry, 56, 3944.CrossRefGoogle ScholarPubMed
Kubarych, T. S., Aggen, S. H., Hettema, J. M., Kendler, K. S., & Neale, M. C. (2008). Assessment of generalized anxiety disorder diagnostic criteria in the National Comorbidity Survey and Virginia Adult Twin Study of Psychiatric and Substance Use Disorders. Psychological Assessment, 20, 206216.CrossRefGoogle ScholarPubMed
Kubarych, T. S., Aggen, S. H., Kendler, K. S., Torgersen, S, Reichborn-Kjennerud, T., & Neale, M. C. (2010). Measurement non-invariance of DSM-IV narcissistic personality disorder criteria across age and sex in a population-based sample of Norwegian twins. International Journal of Methods in Psychiatric Research. 19, 156166.CrossRefGoogle Scholar
McArdle, J. J. & Prescott, C. A. (1992). Age-based construct-validation using structural equation modeling. Experimental Aging Research, 18, 87115.CrossRefGoogle ScholarPubMed
McDonald, R. P. (1981). The dimensionality of tests and items. British Journal of Mathematical & Statistical Psychology, 34, 100117.CrossRefGoogle Scholar
McDonald, R. P. & Marsh, H. W. (1990). Choosing a multivariate model — noncentrality and goodness of fit. Psychological Bulletin, 107, 247255.CrossRefGoogle Scholar
McDonald, R. P. & Mok, M. M. C. (1995). Goodness-of-fit in item response models. Multivariate Behavioral Research, 30, 2340.CrossRefGoogle ScholarPubMed
Mellenbergh, G. J. (1989). Item bias and item response theory. International Journal of Educational Research, 13, 127143.CrossRefGoogle Scholar
Meredith, W. (1993). Measurement invariance, factor-analysis and factorial invariance. Psychometrika, 58, 525543.CrossRefGoogle Scholar
Meredith, W., & Teresi, J. A. (2006). An essay on measurement and factorial invariance. Medical Care, 44, S69–S77.CrossRefGoogle ScholarPubMed
Millsap, R. E., & Everson, H. T. (1993). Methodology review - statistical approaches for assessing measurement bias. Applied Psychological Measurement, 17, 297334.CrossRefGoogle Scholar
Muthen, B., & Asparouhov, T. (2002). Latent variable analysis with categorical outcomes: Multiple–group and growth modeling In Mplus. Mplus Web Notes: No.4 Version 5, December 9, 2002 [On-line].Google Scholar
Muthen, B. O., & Muthen, L. K. (2004). Mplus user's guide (3rd ed.). Los Angeles, CA: Muthen & Muthen.Google Scholar
Neale, M. C., & Cardon, L. R. (1992). Methodology for genetic studies of twins and families. Dordrecht, The Netherlands.CrossRefGoogle Scholar
Neale, M. C., Aggen, S. H., Maes, H. H., Kubarych, T. S., & Schmitt, J. E. (2006). Methodological issues in the assessment of substance use phenotypes. Addictive Behaviors, 31, 10101034.CrossRefGoogle ScholarPubMed
Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2004). Mx: Statistical modeling (6th ed.) Box 980126, Richmond, VA: Department of Psychiatry, Virginia Commonwealth University.Google Scholar
Neale, M. C., Lubke, G., Aggen, S. H., & Dolan, C. V. (2005). Problems with using sum scores for estimating variance components: Contamination and measurement noninvariance. Twin Research and Human Genetics, 8, 553568.CrossRefGoogle ScholarPubMed
Nolen-Hoeksema, S. (1987). Sex differences in unipolar depression: Evidence and theory. Psychological Bulletin, 101, 259282.CrossRefGoogle ScholarPubMed
Nolen-Hoeksema, S. (1990). Sex differences in depression. Palo Alto, CA: Stanford University Press.CrossRefGoogle Scholar
Piccinelli, M., & Wilkinson, G. (2000). Gender differences in depression — Critical review. British Journal of Psychiatry, 177, 486492.CrossRefGoogle ScholarPubMed
Raju, N. S., Laffitte, L. J., & Byrne, B. M. (2002). Measurement equivalence: A comparison of methods based on confirmatory factor analysis and item response theory. Journal of Applied Psychology, 87, 517529.CrossRefGoogle ScholarPubMed
Reise, S. P., Widaman, K. F., & Pugh, R. H. (1993). Confirmatory factor-analysis and item response theory — two approaches for exploring measurement invariance. Psychological Bulletin, 114, 552566.CrossRefGoogle ScholarPubMed
Rutter, M., Caspi, A., & Moffitt, T. E. (2003). Using sex differences in psychopathology to study causal mechanisms: Unifying issues and research strategies. Journal of Child Psychology and Psychiatry, 44, 10921115.CrossRefGoogle ScholarPubMed
Schmitt, J. E., Mehta, P. D., Aggen, S. H., Kubarych, T. S., & Neale, M. C. (2006). Semi-nonparametric methods for detecting latent non-normality: A fusion of latent trait and ordered latent class modeling. Multivariate Behavioral Research, 41, 427443.CrossRefGoogle ScholarPubMed
Spitzer, R. L. & Williams, J. B. W. (1985). Structured clinical interview for DSM-III-R (SCID). New York: Biometrics Research Department, New York State Psychiatric Institute.Google Scholar
Takane, Y. & de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393408.CrossRefGoogle Scholar
Thissen, D., Steinberg, L., & Gerrard, M. (1986). Beyond group-mean differences: The concept of item bias. Psychological Bulletin, 99, 118128.CrossRefGoogle Scholar
Weissman, M. M., & Klerman, G. L. (1977). Sex differences and the epidemiology of depression. Archives of General Psychiatry, 34, 98111.CrossRefGoogle ScholarPubMed
Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: Current approaches and future directions. Psychological Methods, 12, 5879.CrossRefGoogle ScholarPubMed