Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T08:36:09.452Z Has data issue: false hasContentIssue false

Answer sets for consistent query answering in inconsistent databases

Published online by Cambridge University Press:  31 July 2003

MARCELO ARENAS
Affiliation:
Pontificia Universidad Catolica de Chile, Departamento de Ciencia de Computacion, Santiago, Chile (e-mail: [email protected]) Current address: University of Toronto, Department of Computer Science, Toronto, Canada. E-mail: [email protected].
LEOPOLDO BERTOSSI
Affiliation:
School of Computer Science, Carleton University, Ottawa, Canada (e-mail: [email protected])
JAN CHOMICKI
Affiliation:
Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, USA (e-mail: [email protected])

Abstract

A relational database is inconsistent if it does not satisfy a given set of integrity constraints. Nevertheless, it is likely that most of the data in it is consistent with the constraints. In this paper we apply logic programming based on answer sets to the problem of retrieving consistent information from a possibly inconsistent database. Since consistent information persists from the original database to every of its minimal repairs, the approach is based on a specification of database repairs using disjunctive logic programs with exceptions, whose answer set semantics can be represented and computed by systems that implement stable model semantics. These programs allow us to declare persistence by default of data from the original instance to the repairs; and changes to restore consistency, by exceptions. We concentrate mainly on logic programs for binary integrity constraints, among which we find most of the integrity constraints found in practice.

Type
Regular Papers
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)