Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T14:02:31.903Z Has data issue: false hasContentIssue false

Diatoms in Estuaries and Tidal Marshes

Published online by Cambridge University Press:  21 July 2017

Scott W. Starratt*
Affiliation:
U.S. Geological Survey MS 910 Volcanic Hazards Team 345 Middlefield Road Menlo Park, CA 94025
Get access

Abstract

Diatoms from estuarine and marsh sediments can be used to evaluate a number of geological processes. Information on salinity, elevation, and substrate derived from modern assemblages have been used to determine local and regional Holocene sea level history, identify seismic and tsunami events, and aid in the recognition of regional variations in precipitation. In order to apply diatoms to these questions, it is necessary to have a detailed knowledge of the ecology of marine, brackish, and freshwater taxa, as well as an understanding of the taphonomic processes that determine the final diatom assemblage. The potential for studies of pre-Holocene estuarine depositional systems is largely limited by the availability of study sites.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Admiraal, W. 1984. The ecology of estuarine sediment-inhabiting diatoms. Progress in Phycological Research, 3:269322.Google Scholar
Aleem, A. A., 1950. Distribution and ecology of British marine littoral diatoms. Journal of Ecology, 38:75106.CrossRefGoogle Scholar
Amspoker, M. C., and McIntire, C. D. 1978. Distribution of intertidal diatoms associated with sediments in Yaquina estuary. Journal of Phycology, 14:387395.CrossRefGoogle Scholar
Amspoker, M. C., and McIntire, C. D. 1986. Effects of sedimentary processes on the diatom flora of the Columbia River estuary. Botanica Marina, 29:391399.CrossRefGoogle Scholar
Anderson, N. J. and Vos, P. 1992, Learning from the past: Diatoms as paleoecological indicators of changes in marine environments. Netherlands Journal of Aquatic Ecology, 26:1930.CrossRefGoogle Scholar
Andrews, G. W. 1972. Some fallicies of quantitative diatom paleontology. Beihefte zu Nova Hedwigia, 39:285294.Google Scholar
Atwater, B. F., and Hemphill-Haley, E. 1997. Recurrence intervals for great earthquakes of the past 3,500 years at northeastern Willapa Bay, Washington. U.S. Geological Survey Professional Paper 1576, 108 p.CrossRefGoogle Scholar
Atwater, B. F., Hedel, C. W., and Helley, E. J. 1977. Late Quaternary depositional history, Holocene sea-level changes, and vertical crustal movement, southern San Francisco Bay, California. U.S. Geological Survey Professional Paper 1014, 15 p.CrossRefGoogle Scholar
Bakker, J. P., De Leeuw, J., Dijkema, K. S., Leendertse, P. C., Prins, H. H. T., and Rozema, J. 1993. Salt marshes along the coast of The Netherlands. Hydrobiologia, 265:7395.CrossRefGoogle Scholar
Barthsch-Winkler, S., Ovenshine, A. T., and Kachadoorian, R. 1982. Holocene history of the estuarine area surrounding Portage, Alaska recorded in a 93 m core. Canadian Journal of Earth Sciences, 20:802820.CrossRefGoogle Scholar
Benson, L., Kashgarian, M., Rye, R., Lund, S., Paillet, F., Smoot, J., Kester, C., Mensing, S., Meko, D., and Lindström, S. 2002. Holocene multidecadal and multicentennial droughts affecting northern California and Nevada. Quaternary Science Reviews, 21:659682.CrossRefGoogle Scholar
Beyens, L., and Denys, L. 1982. Problems in diatom analysis of deposits: Allochthonous valves and fragmentation. Geologie en Mijnbouw, 61:159162.Google Scholar
Birks, H. J. B. 1994. The importance of pollen and diatom taxonomic precision in quantitative paleoenvironmental reconstructions. Review of Paleobotany and Palynology, 83:107117.CrossRefGoogle Scholar
Bloom, A. M., Moser, K. A., Porinichu, D. F., and Macdonald, G. M. 2003. Diatom-inference models for surface-water temperature and salinity developed from a 57-lake calibration set from the Sierra Nevada, California, USA. Journal of Paleolimnology, 29:235255.CrossRefGoogle Scholar
Bruno, M. G. and Lowe, R. L. 1980. Differences in the distribution of some bog diatoms: A cluster analysis. The American Midland Naturalist, 104:7079.CrossRefGoogle Scholar
Brush, G. S. 1989. Patterns of recent sediment accumulation. Limnology and Oceanography, 34:12351246.CrossRefGoogle Scholar
Byrne, R., Ingram, B. L., Starratt, S., Malamud-Roam, F., Collins, J. N., and Conrad, M. E. 2001. Carbon-isotope, diatom, and pollen evidence for late Holocene salinity change in a brackish marsh in the San Francisco estuary. Quaternary Research, 55:6676.CrossRefGoogle Scholar
Campeau, S., Pienitz, R., and Héquette, A. 1999. Diatoms from the Beaufort Sea coast, southern Arctic Ocean (Canada): Modern analogues for reconstructing late Quaternary environment and relative sea levels. Bibliotheca Diatomologica, 42:1244.Google Scholar
Charles, D. F., and Smol, J. P. 1994. Long-term chemical changes in lakes: Quantitative inferences from biotic remains in the sediment record, p. 331. In Baker, L. (ed.), Environmental Chemistry of Lakes and Reservoirs. Advances in Chemistry Series 237, American Chemical Society, Washington D.C. CrossRefGoogle Scholar
Clague, J. J., Bobrowsky, P. T., and Hutchinson, I. 2000. A review of geological records of large tsunamis at Vancouver Island, British Columbia, and implications for hazard. Quaternary Science Reviews, 19:849863.CrossRefGoogle Scholar
Clague, J.J., Hutchinson, I., Mathewes, R. W., and Patterson, R. T. 1999. Evidence for late Holocene tsunamis at Catala Lake, British Columbia. Journal of Coastal Research, 15:4560.Google Scholar
Clarke, K. R., and Warwick, R. M. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, second edition. Primer-E Limited, Plymouth, England, 165 p.Google Scholar
Cooper, S. R. 1995a. Diatoms in sediment cores from the mesohaline Chesapeake Bay, U.S.A. Diatom Research, 10:3989.CrossRefGoogle Scholar
Cooper, S. R. 1995b. Chesapeake Bay watershed historical land use: Impact on water quality and diatom communities. Ecological Applications, 5:703723.CrossRefGoogle Scholar
Cooper, S. R. 1999. Estuarine paleoenvironmental reconstructions using diatoms, p. 352373. In Stoermer, E.F., and Smol, J. P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, England.CrossRefGoogle Scholar
Crawford, R. M., 1979, Taxonomy and frustular structure of the marine centric diatom Paralia sulcata. Journal of Phycology, 15:200210.CrossRefGoogle Scholar
Cummins, H., Powell, E. N., Stanton, R. J. Jr., and Staff, G. 1986a. The rate of taphonomic loss in modern benthic habitats: How much of the potentially preservable community is preserved? Palaeogeography, Palaeoclimatology, Palaeoecology, 52:291320.CrossRefGoogle Scholar
Cummins, H., Powell, E. N., Stanton, R. J. Jr., and Staff, G. 1986b. The size-frequency distribution in paleoecology: The effects of taphonomic processes during formation of death assemblages in Texas bays. Palaeontology, 29:495518.Google Scholar
Cupp, E. E., 1943, Marine plankton diatoms of the west coast of North America. Bulletin of Scripps Institute of Oceanography, 5:1238.Google Scholar
Davis, R. A. 1996. The Evolving Coast. Scientific American Library, New York, 233 p.Google Scholar
Davis, R. A. Jr., and Fitzgerald, D. M. 2004. Beaches and Coasts. Blackwell Publishing, Maiden, Massachusetts, 419 p.Google Scholar
Denne, R. A., and Sen Gupta, B. K. 1989. Effects of taphonomy and habitat on the record of benthic foraminifera in modern sediments. Palaios, 4:414.423.CrossRefGoogle Scholar
Denys, L. 1995. The diatom record of a core from the seaward part of the coastal plain of Belgium, p. 471487. In Marino, M. and Montresor, M. (eds.), Proceedings of the Thirteenth International Diatom Symposium. Biopress, Bristol, England.Google Scholar
Denys, L. 2006. Calibration of littoral diatoms to water chemistry in standing fresh waters (Flanders, lower Belgium): Inference models for historical sediment assemblages. Journal of Paleolimnology, 35:763787.CrossRefGoogle Scholar
Denys, L. 2007. Water-chemistry transfer functions for epiphytic diatoms in standing freshwaters and a comparison with models based on littoral sediment assemblages (Flanders, Belgium). Journal of Paleolimnology, 38:97116.CrossRefGoogle Scholar
Denys, L., and Baeteman, C. 1995. Holocene evolution of relative sea-level and local mean high water spring tides in Belgium–A first assessment. Marine Geology, 124:119.CrossRefGoogle Scholar
Denys, L., and De Wolf, H. 1999. Diatoms as indicators of coastal paleoenvironments and relative sea-level change, p. 277297. In Stoermer, E.F., and Smol, J.P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, England.CrossRefGoogle Scholar
Denys, L., and Verbruggen, C. 1989. A case of drowning – the end of Subatlantic peat growth and related palaeoenvironmental changes in the lower Scheldt Basin, Belgium based on diatom and pollen analysis. Review of Palaeobotany and Palynology, 59:736.CrossRefGoogle Scholar
Dyer, K. R. 1995. Sediment transport processes in estuaries, p. 423450. In Perillo, G. M. E. (ed.), Geomorphology and Sedimentology of Estuaries. Developments in Sedimentology 53. Elsevier Science Publishers, Amsterdam, The Netherlands.CrossRefGoogle Scholar
Earle, J. C., and Duthie, H. C. 1986. A multivariate statistical approach for interpreting marshland diatom succession, p. 441458. In Ricard, M. (ed.), Proceedings of the Eighth International Diatom Symposium, Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Eronen, M., Kankainen, T., and Tsukada, M. 1987. Late Holocene sea-level record in a core from the Puget Lowland, Washington. Quaternary Research, 27:147159.CrossRefGoogle Scholar
Fishbein, E., and Patterson, R. T. 1993. Error weighted maximum likelihood (EWML): A new statistically valid method to cluster quantitative micropaleontological data. Journal of Paleontology, 67:475486.CrossRefGoogle Scholar
Foged, N. 1978. Diatoms in eastern Australia. Bibliotheca Phycologia, 41:1243.Google Scholar
Foged, N. 1979. Diatoms in New Zealand, the North Island. Bibliotheca Phycologia, 47:1224.Google Scholar
Foged, N. 1981. Diatoms in Alaska. Bibliotheca Phycologia, 53:1316.Google Scholar
Gauch, H. G. Jr. 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge, England, 298 p.CrossRefGoogle Scholar
Germain, H. 1981. Flore des diatomées diatomphycées eaux douces et saumatres du Massif Armoricain et des contrées voisines d'Europe occidentale. Sociéte Nouvelle des Éditions-Boubée, Paris, 444 p.Google Scholar
Gilbert, G. K. 1917. Hydraulic-mining debris in the Sierra Nevada. U.S. Geological Survey Professional Paper, 105, 154 p.Google Scholar
Goman, M. F. 2005. Discrimination of estuarine marsh subenvironments (San Francisco Bay, California, U.S.A.) using a multivariate statistical calibration of abiotic sediment properties. Journal of Sedimentary Research, 75:398408.CrossRefGoogle Scholar
Green, O. R. 2001. A Manual of Practical Laboratory and Field Techniques in Paleobiology. Kluwer Academic Publishers, Dordrecht, The Netherlands, 538 p.CrossRefGoogle Scholar
Haggart, B. A. 1987. Relative sea-level changes in the Moray Firth area, Scotland, p. 67108. In Shennan, I. and Tooley, M.J. (eds.), Sea-level Changes. Basil Blackwell, Oxford, England.Google Scholar
Hammer, O., and Harper, D. 2006. Paleontological Data Analysis. Blackwell Publishing, Maiden, Massachusetts, 351 p.Google Scholar
Hasle, G. R. 1978. Some Thalassiosira species with one central process (Bacillariophyceae). Botany, 2:77110.Google Scholar
Hasle, G. R. 1979. Thalassiosira decipiens (Grun.) Jorg. (Bacillariophyceae): Bacillaria, 2:85108.Google Scholar
Hecker, S., Pantosti, D., Schwartz, D. P., Hamilton, J. C., Reidy, L. M., and Powers, T. J. 2005. The most recent large earthquake on the Rodgers Creek Fault, San Francisco Bay area. Bulletin of the Seismological Society of America, 95:844860.CrossRefGoogle Scholar
Hemphill-Haley, E. 1992. The application of diatom paleoecology to interpretations of Holocene relative sea-level change and coseismic subsidence in southwestern Washington. Unpublished Ph.D. dissertation, University of California at Santa Cruz, 321 p.Google Scholar
Hemphill-Haley, E. 1995a. Intertidal diatoms from Willapa Bay, Washington: Application to studies of small-scale sea-level changes. Northwest Science, 69:2945.Google Scholar
Hemphill-Haley, E. 1995b. Diatom evidence for earthquake-induced subsidence and tsunami 300 yr ago in southern coastal Washington. GSA Bulletin, 107:367378.2.3.CO;2>CrossRefGoogle Scholar
Hemphill-Haley, E. 1996. Diatoms as an aid in identifying late-Holocene tsunami deposits. The Holocene, 6:439448.CrossRefGoogle Scholar
Hendey, N. I. 1951. Littoral diatoms of Chichester Harbour with special reference to fouling. Journal of the Royal Microscopical Society, 71:186.CrossRefGoogle ScholarPubMed
Hendey, N. I. 1964. An introductory account of the smaller algae of British coastal waters, V. Bacillariophyceae (Diatoms). Fisheries Investigations Series, IV, 317 p.Google Scholar
Hendey, N. I. 1977. The species diversity index of some in-shore diatom communities and its use in assessing the degree of pollution insult on parts of the north Coast of Cornwall. Nova Hedwigia, 54:355378.Google Scholar
Hustedt, F. 1955. Marine littoral diatoms of Beaufort, North Carolina. Duke University Marine Station Bulletin, 6:157.Google Scholar
Hutchinson, I., Guilbault, J. -P., Clague, J. J., and Bobrowsky, P. T. 2000. Tsunamis and tectonic deformation at the northern Cascadia margin: A 3000-year record from Deserted Lake, Vancouver Island, British Columbia, Canada. The Holocene, 10:429439.CrossRefGoogle Scholar
Ingram, B. L., Ingle, J. C., and Conrad, M. E. 1996. Stable isotope record of late Holocene salinity and river discharge in San Francisco Bay, California. Earth and Planetary Science Letters, 141:237247.CrossRefGoogle Scholar
John, J. 1983. The diatom Flora of the Swan River Estuary, Western Australia. Bibliotheca Phycologica, 64:1358.Google Scholar
Jongman, R. H. G., Ter Braak, C. J. F., and Van Tongeren, O. F. R. 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge, England, 299 p.CrossRefGoogle Scholar
Juggins, S. 1992. Diatoms in the Thames estuary, England: Ecology, paleoecology and salinity transfer function. Bibliotheca Diatomologica, 25:1216.Google Scholar
Kelsey, H. M., Nelson, A. R., Hemphill-Haley, E., and Witter, R. C. 2005. Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone. GSA Bulletin, 117:10091032.CrossRefGoogle Scholar
Kennett, D. N., and Hargraves, P. E. 1985. Benthic diatoms and sulfide fluctuations: Upper basin of Pettaquamscutt River, Rhode Island. Estuarine, Coastal, and Shelf Science, 21:577586.CrossRefGoogle Scholar
Kidwell, S. M., and Bosence, D. W. J. 1991. Taphonomy and time-averaging of marine shelly faunas, p. 116209. In Allison, P. A. and Briggs, D. E. G. (eds.), Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum Press, New York.Google Scholar
Kosugi, M. 1987. Limiting factors on the distribution of benthic diatoms in coastal regions – salinity and substratum. Diatom, 3:2131.Google Scholar
Krammer, K. 2000. Diatoms of Europe: The Genus Pinnularia . A. R. G. Gantner Verlag K.G., Ruggell, Germany, 703 p.Google Scholar
Krammer, K., and Lange-Bertalot, H. 1985. Naviculaceae, Neue und Wenig Bekannte Taxa, Neue Kombinationen und Synonyme Sowie Bemerkungen zu einigen Gattungen. Bibliotheca Diatomologica, 9:1230.Google Scholar
Krammer, K., and Lange-Bertalot, H. 1991a. Süszwasserflora von Mitteleuropa: Bacillariophyceae, 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fischer Verlag, Jena, Germany, 576 p.Google Scholar
Krammer, K., and Lange-Bertalot, H. 1991b. Süszwasserflora von Mitteleuropa: Bacillariophyceae, 4. Teil: Achnanthaceae, kritische ergänzungen zu Navicula (Lineolatae) und Gomphonema . Gustav Fischer Verlag, Jena, Germany, 436 p.Google Scholar
Krammer, K., and Lange-Bertalot, H. 1997a, Süszwasserflora von Mitteleuropa: Bacillariophyceae, 1. Teil: Naviculaceae. Gustav Fischer, Jena, Germany, 876 p.Google Scholar
Krammer, K., and Lange-Bertalot, H. 1997b. Süszwasserflora von Mitteleuropa: Bacillariophyceae, 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fischer, Jena, Germany, 611 p.Google Scholar
Lagoe, M. B. 1976. Species diversity of deepsea benthic foraminifera from the central Arctic Ocean. Geological Society of America Bulletin, 87:16781683.2.0.CO;2>CrossRefGoogle Scholar
Laird, K., and Edgar, R. 1992. Spatial distribution of diatom in the surficial sediments of a New England salt marsh. Diatom Research, 7:267279.CrossRefGoogle Scholar
Lange-Bertalot, H., and Krammer, K. 1987. Bacillariaceae, Epithemiaceae, Surirellaceae: Neue und wenig bekannte Taxa, neue Kombinationen und Synonyme sowie Bermerkungen und Ergänzungen zu den Naviculaceae. Bibliotheca Diatomologica, 15:1289.Google Scholar
Lange-Bertalot, H., and Krammer, K. 1989. Achnanthes, eine Monographic der Gattung. Bibliotheca Diatomologica, 18:1393.Google Scholar
Lange-Bertalot, H., and Simonsen, R. 1978. A taxonomic revision of the Nitzschia lanceolatae Grunow, 2: European and related extra-European freshwater and brackish water taxa. Bacillaria, 1:11111.Google Scholar
Laws, R. A. 1988. Diatoms (Bacillariophyceae) from surface sediments in the San Francisco Bay estuary. Proceedings of the California Academy of Sciences, 45:133254.Google Scholar
Long, A. J., and Shennan, I. 1994. Sea-level changes in Washington and Oregon and the “earthquake deformation cycle”. Journal of Coastal Research, 10:825838.Google Scholar
Long, A. J., and Shennan, I. 1998. Models of rapid relative sea-level change in Washington and Oregon, USA. The Holocene, 8:129142.CrossRefGoogle Scholar
Long, A. J., Scaife, R. G., and Edwards, R. J. 2000. Stratigraphic architecture, relative sea-level, and models fo estuary development in southern England: New data from Southampton Water, p. 253279. In Pye, K., and Allen, J. R. L. (eds.), Coastal and Estuarine Environments: Sedimentology, Geomorphology, and Geoarchaeology. Geological Society, London, Special Publications, 175.Google Scholar
Long, A. J., Innes, J. B., Kirby, J. R., Lloyd, J. M., Rutherford, M. M., Shennan, I., and Tooley, M. J. 1998. Holocene sea-level change and coastal evolution in the Humber estuary, eastern England: An assessment of rapid coastal change. The Holocene, 8:229247.CrossRefGoogle Scholar
Luternauer, J. L., Atkins, R. J., Moody, A. I., Williams, H. F. L., and Gibson, J. W. 1995. Salt marshes, p. 307332. In Perillo, G. M. E. (ed.), Geomorphology and Sedimentology of Estuaries. Developments in Sedimentology 53. Elsevier Science, Amsterdam, The Netherlands.CrossRefGoogle Scholar
Mahood, A., Fryxell, G. A., and McMillian, M. 1986. The diatom genus Thalassiosira: Species from the San Francisco Bay system. Proceedings of the California Academy of Sciences, 44:127156.Google Scholar
Main, S. P., and McIntire, C. D. 1974. The distribution of epiphytic diatoms in Yaquina Estuary, Oregon (USA). Botanica Marina, 17:8899.CrossRefGoogle Scholar
McGann, M., Sloan, D., and Cohen, A. N. 2000. Invasion by a Japanese marine microorganism in western North America. Hydrobiologia, 421:2530.CrossRefGoogle Scholar
McIntire, C. D. 1973. Diatom associations in Yaquina Estuary, Oregon: A multivariate analysis. Journal of Phycology, 9:254259.CrossRefGoogle Scholar
McIntire, C. D. 1978. The distribution of estuarine diatoms along environmental gradients: A canonical correlation. Estuarine and Coastal Marine Science, 6:447457.CrossRefGoogle Scholar
McIntire, C. D., and Moore, W. W. 1977. Marine littoral diatoms: Ecological considerations. p. 333371. Werner, D. (ed.), Biology of Diatoms. University of California Press, Berkeley, California.Google Scholar
McIntire, C. D., and Overton, W. S. 1971. Distributional patterns in assemblages of attached diatoms from Yaquina Estuary, Oregon. Ecology, 52:758777.CrossRefGoogle Scholar
McIntire, C. D., and Reimer, C. W. 1974. Some marine and brackish water Achnanthes from Yaquina Estuary, Oregon (USA). Botanica Marina, 17:164175.CrossRefGoogle Scholar
Mikkelsen, N. 1980. Experimental dissolution of Pliocene diatoms. Nova Hedwigia, 33:893911.Google Scholar
Moore, W. W., and McIntire, C. D. 1977, Spatial and seasonal distribution of littoral diatoms in Yaquina Estuary, Oregon (USA). Botanica Marina, 20:99109.CrossRefGoogle Scholar
Minoura, K., and Nakaya, S. 1991. Traces of tsunami preserved in inter-tidal lacustrine and marsh deposits: Some examples from northeast Japan. The Journal of Geology, 99:265287.CrossRefGoogle Scholar
Moser, K. A., Macdonald, G. M., and Smol, J. P. 1996. Applications of freshwater diatoms to geographical research. Progress in Physical Geography, 20:2152.CrossRefGoogle Scholar
Nelson, A. R., and Kashima, K. 1993. Diatom zonation in southern Oregon tidal marshes relative to vascular plants, foraminifera, and sea level. Journal of Coastal Research, 9:673697.Google Scholar
Nelson, A. R., Ota, Y., Umitsu, M., Kashima, K., and Matsushima, Y. 1998. Seismic or hydrodynamic control of rapid late-Holocene sea-level rises in southern coastal Oregon, USA? The Holocene, 8:287299.CrossRefGoogle Scholar
Oppenheim, D. R. 1988. The distribution of epipelic diatoms along an intertidal shore in relation to principal physical gradients. Botanica Marina, 31:6572.CrossRefGoogle Scholar
Palmer, A. J. M., and Abbott, W. H. 1986. Diatoms as indicators of sea-level change, p. 457487. In van de Plasche, O. (ed.), Sea-level Research – a Manual for the Collection and Evaluation of Data. Geo Books, Norwich, England.Google Scholar
Pankow, H. 1990. Ostsee-Algenflora. Gustav Fischer Verlag, Jena, Germany, 648 p.Google Scholar
Pappas, J. L., and Stoermer, E. F. 1996. Formulation of a method to count number of individuals representative of number of species in algal communities. Journal of Phycology, 32: 693696.CrossRefGoogle Scholar
Patrick, R., and Reimer, C. W. 1966. The Diatoms of the United States, v. 1: Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. Monographs of the Academy of Natural Science of Philadelphia, 13:1688.Google Scholar
Patrick, R., and Reimer, C. W. 1975. The Diatoms of the United States, v. 2, part 1: Entomoneidaceae, Cymbellaceae, Gomphonemaceae, Epithemiaceae. Monographs of the Academy of Natural Science of Philadelphia, 13:1213.Google Scholar
Perillo, G. M. E. 1995. Geomorphology of and sedimentology of estuaries, p. 116. In Perillo, G. M. E. (ed.), Geomorphology and Sedimentology of Estuaries. Developments in Sedimentology 53. Elsevier Science Publishers, Amsterdam, The Netherlands.Google Scholar
Pestrong, R. 1972. Tidal-flat sedimentation at Cooley Landing, southwest San Francisco Bay. Sedimentary Geology, 8:251288.CrossRefGoogle Scholar
Peterson, D. H., Cayan, D. R., Festa, J. F., Nichols, F. H., Walters, R. A., Slack, J. V., Hager, S. E., and Schemel, L. E. 1989. Climatic variability in an estuary: Effects of river flow on San Francisco Bay, p. 419442. In Peterson, D. H. (ed.), Aspects of Climate Variability in the Pacific and the Western Americas. American Geophysical Union, Washington, D.C. Google Scholar
Pethick, J. S. 1992. Saltmarsh geomorphology, p. 4162. In Allen, J. R. L. and Pye, K. (eds.), Saltmarshes: Morphodynamics, Conservation, and Engineering Significance. Cambridge University Press, Cambridge, England.Google Scholar
Pritchard, N. M., and Anderson, A. J. B. 1971. Observations on the use of cluster analysis in botany with an ecological example. Journal of Ecology, 59:727747.CrossRefGoogle Scholar
Rao, V. N. R., and Lewin, J. 1976. Benthic marine diatom flora fo False Bay, San Juan Island, Washington. Syesis, 9:173213.Google Scholar
Riznyk, R. Z. 1973. Interstitial diatoms from two tidal flats in Yaquina Estuary, Oregon, USA Botanica Marina, 16:113138.Google Scholar
Roelofs, A. K. 1984. Distributional patterns and variation of valve diameter of Paralia sulcata in surface sediments of southern British Columbia inlets. Estuarine, Coastal and Shelf Science, 18:165176.CrossRefGoogle Scholar
Round, F. E., Crawford, R. M., and Mann, D. G., 1990. The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge, 747 p.Google Scholar
Sato, H. and Kumano, S. 1986. The succession of diatom assemblages and Holocene sea-level changes during the last 6,000 years at Sado Island, central Japan: The Holocene development of Lake Kamo-ko II. Japanese Journal of Phycology, 47:177183.Google Scholar
Sato, H., Maeda, Y., and Kumano, S. 1983. Diatom assemblages and Holocene sea level changes at the Tamatsu site in Kobe, western Japan. The Quaternary Research, 22:7790.CrossRefGoogle Scholar
Sawai, Y. 2001a. Episodic emergence in the past 3000 years at the Akkeshi estuary, Hokkaido, northern Japan. Quaternary Research, 56:231241.CrossRefGoogle Scholar
Sawai, Y. 2001b. Distribution of living and dead diatoms in tidal wetlands of northern Japan: Relations to taphonomy. Palaeogeography, Palaeoclimatology, Palaeoecology, 173:125141.CrossRefGoogle Scholar
Scholz, C. A. 2001. Applications of seismic sequence stratigraphy in lacustrine basins, p. 722. In Last, W. M., and Smol, J. P. (eds.), Tracking Environmental Change Using Lake Sediments. Volume 1: Basin Analysis, Coring, and Chronological Techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Schrader, H., and Gersonde, R. 1978. Diatoms and silicoflagellates. Utrecht Micropaleontology Bulletin, 17:129176.Google Scholar
Shennan, I. 1986. Flandrian sea-level changes in the Fenland. I: The geographical setting and evidence of relative sea-level change. Journal of Quaternary Science, 1:119154.CrossRefGoogle Scholar
Shennan, I., Innes, J. B., Long, A., and Zong, Y. 1995. Holocene relative sea-level change and coastal vegetation history at Kentra Moss. Argil, northwest Scotland. Marine Geology, 124:4359.Google Scholar
Shennan, I., Tooley, M. J., Davis, M. J., and Haggart, B. A. 1983. Analysis and interpretation of Holocene sea-level data. Nature, 302:404406.CrossRefGoogle Scholar
Shennan, I., Long, A. J., Rutherford, M. M., Green, F. M., Innes, J. B., Lloyd, J. M., Zong, Y., and Walker, K. J. 1996. Tidal marsh stratigraphy, sea-level change and large earthquakes, I: A 5000 year record in Washington, U.S.A. Quaternary Science Reviews, 15: 10231059.CrossRefGoogle Scholar
Sherrod, B. L. 1999. Gradient analysis of diatom assemblages in a Puget Sound salt marsh: Can such assemblages be used for quantitative paleoecological reconstructions?. Palaeogeography, Palaeoclimatology, Palaeoecology, 149:213226.CrossRefGoogle Scholar
Sherrod, B. L., Bucknam, R. C., and Leopold, E. B. 2000. Holocene relative sea level changes along the Seattle Fault at Restoration Point, Washington. Quaternary Research, 54:384393.CrossRefGoogle Scholar
Sherrod, B. L., Rollins, H. B., and Kennedy, S. K. 1989. Subrecent intertidal diatoms from St. Catherines Island, Georgia: Taphonomic implications. Journal of Coastal Research, 5:665677.Google Scholar
Simonsen, R. 1962. Untersuchungen zur Systematik und Ökologie der Bodendiatomeen der westlichen Ostsee. Internationale Revue der Gesamten Hydrobiologie, Systematische Beihefte, 1:8144.Google Scholar
Smol, J. P. 1981. Problems associated with the use of “species diversity” in paleolimnological studies. Quaternary Research, 15:209212.CrossRefGoogle Scholar
Smol, J. 1992. Paleolimnology: An important tool for effective ecosystem management. Journal of Aquatic Ecosystem Health, 1:4951.CrossRefGoogle Scholar
Snoeijs, P. 1993. Intercalibration and distribution of diatom species in the Baltic Sea, Volume 1. The Baltic Marine Biologists Publication, 16a:1130,Google Scholar
Snoeijs, P. 1999. Diatoms and environmental change in brackish waters, p. 298333. In Stoermer, E. F., and Smol, J.P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, England.CrossRefGoogle Scholar
Snoeijs, P., and Balashova, N. 1998. Intercalibration and distribution of diatom species in the Baltic Sea, Volume 5. The Baltic Marine Biologists Publication, 16e:1144.Google Scholar
Snoeijs, P., and Kasperovicnienéd, J. 1996. Intercalibration and distribution of diatom species in the Baltic Sea, Volume 4. The Baltic Marine Biologists Publication, 16d:1126.Google Scholar
Snoeijs, P., and Potapova, M. 1995. Intercalibration and distribution of diatom species in the Baltic Sea, Volume 3. The Baltic Marine Biologists Publication, 16c:1126.Google Scholar
Snoeijs, P., and Vilbaste, S.S. 1994. Intercalibration and distribution of diatom species in the Baltic Sea, Volume 2. The Baltic Marine Biologists Publication, 16b:1126.Google Scholar
Stahle, D. W., Therrell, M. D., and Cleveland, M. K. 2001. Ancient blue oaks reveal human impact on San Francisco Bay salinity. EOS, 82:141, 144–145.CrossRefGoogle Scholar
Starratt, S. W. 2002, Diatoms as indicators of freshwater flow variation in central California, p. 129143. In West, G.J., and Buffaloe, L.D. (eds.), Proceedings of the Eighteenth Annual Pacific Climate Workshop, Technical Report 58 of the Interagency Ecological Program for the San Francisco Estuary.Google Scholar
Starratt, S. W. 2004a. Diatoms as indicators of late Holocene freshwater flow variation in the San Francisco Bay estuary, central California, U.S.A., p. 371397. In Poulin, M. (ed.) Seventeenth International Diatom Symposium. Biopress Limited, Bristol, England.Google Scholar
Starratt, S. W. 2004b. Late Holocene diatom and geochemical evidence of freshwater flow variation in northern San Francisco Bay, California. Unpublished Ph.D. dissertation, University of California at Berkeley, 506 p.Google Scholar
Stevenson, R. J. 1984. Procedures for mounting algae in syrup medium. Transactions of the American Microscopical Society, 103:320321.CrossRefGoogle Scholar
Stine, S. 1990. Late Holocene fluctuations of Mono Lake, eastern California. Palaeogeography, Palaeoclimatology, Palaeoecology, 78:333381.CrossRefGoogle Scholar
Sullivan, M. J. 1975. Diatom communities from a Delaware salt marsh. Journal of Phycology, 11:384390.CrossRefGoogle Scholar
Sullivan, M. J. 1978. Diatom community structure: Taxonomic and statistical analyses of a Mississippi salt marsh. Journal of Phycology, 14:468475.CrossRefGoogle Scholar
Sullivan, M. J. 1999. Applied diatom studies in estuaries and shallow coastal environments, p. 334351. In Stoermer, E. F., and Smol, J. P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, England, 469 p.CrossRefGoogle Scholar
Sundbäck, K. and Snoeijs, P. 1991. Effects of nutrient enrichment on microalgal community composition in a coastal shallow-water sediment system: An experimental study. Botanica Marina, 34:341358.CrossRefGoogle Scholar
Taft, C. E. 1978. A mounting medium for fresh-water plankton. Transactions of the American Microscopical Society, 97:263264.CrossRefGoogle Scholar
Tynni, R. 1986. Observations of diatoms on the coast of Washington. Geological Survey of Finland Report, 75:525.Google Scholar
Vos, P. C., and De Wolf, H. 1988. Methodological aspects of paleo-ecological diatom research in coastal areas of the Netherlands. Geologie en Mijnbouw, 67:3140.Google Scholar
Vos, P. C. and De Wolf, H. 1993, Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands: Methodological aspects. Hydrobiologia, 269/270:285296.CrossRefGoogle Scholar
Wendker, S. 1990. Unterschungen zur subfossilen und rezenten Diatomeenflora des Schlei-Ästuars (Ostsee). Bibliotheca Diatomologica, 20:1268.Google Scholar
Whitehead, J. M., and McMinn, A. 1997. Paleodepth determination from Antarctic benthic diatom assemblages. Marine Micropaleontology, 29:301318.CrossRefGoogle Scholar
Whiting, M. C., and McIntire, C. D. 1985. An investigation of distributional patterns in the diatom flora of Netarts Bay, Oregon, by correspondence analysis. Journal of Phycology, 21:655661.CrossRefGoogle Scholar
Wilderman, C. C. 1986. Techniques and results of an investigation into the autecology of some major species of diatom from the Severn River estuary, Chesapeake Bay, Maryland, U.S.A., p. 631643. In Ricard, M. (ed.), Proceedings of the Eighth International Diatom Symposium, Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Wilderman, C. C. 1987. Patterns of distribution of diatom assemblages along environmental gradients in the Severn River estuary, Chesapeake Bay, Maryland. Journal of Phycology, 23:209217.CrossRefGoogle Scholar
Williams, H., and Hutchinson, I. 2000. Stratigraphic and microfossil evidence for late Holocene tsunamis at Swantown marsh, Whidbey Island, Washington. Quaternary Research, 54:218227.CrossRefGoogle Scholar
Witkowski, A., Lange-Bertalot, H., and Metzeltin, D. 2000. Diatom Flora of Marine Coasts I. A. R. G. Gantner Verlag K.G., Ruggell, Germany, 925 p.Google Scholar
Zong, Y. 1997. Mid- and late-Holocene sea-level changes in Roudsea Marsh, northwest England: A diatom biostratigraphical investigation. The Holocene, 7:311323.CrossRefGoogle Scholar
Zong, Y. 1998. Diatom records and sedimentary responses to sea-level change during the last 8000 years in Roudsea Wood, northwest England. The Holocene, 8:219228.CrossRefGoogle Scholar
Zong, Y., and Horton, B. P. 1998. Diatom zones across intertidal flats and coastal saltmarshes in Britain. Diatom Research, 13:375394.CrossRefGoogle Scholar
Zong, Y., and Horton, B. P. 1999. Diatom-based tidal-level transfer functions as an aid in reconstructing Quaternary history of sea-level movements in the UK. Journal of Quaternary Science, 14:153167.3.0.CO;2-6>CrossRefGoogle Scholar