Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T06:17:27.987Z Has data issue: false hasContentIssue false

The Application of Geographic Information Systems to Paleobiogeography: Implications for the Study of Invasions and Mass Extinctions

Published online by Cambridge University Press:  21 July 2017

Alycia L. Stigall Rode*
Affiliation:
Department of Geological Sciences, Ohio University, 316 Clippinger Laboratories, Athens, Ohio, 45701 USA
Get access

Abstract

Mapping geographic ranges of species and higher taxa using Geographic Information Systems (GIS) produces quantitative data on spatial and temporal changes in geographic ranges. The primary advantage of GIS analysis is that it has the capacity to utilize large amounts of occurrence data of species to produce quantitatively constrained geographic range reconstructions that are amenable to statistical analysis. The basic steps in GIS range reconstruction are database assembly (including taxonomic, geographic, and stratigraphic information for each specimen), mapping of localities of species on modern continental configuration, rotation of occurrence data of species onto paleocontinental reconstructions, and reconstructions of geographic ranges. GIS analysis of ranges of species has been used to assess faunal dynamics of the Late Devonian Biodiversity Crisis, and three case studies are presented here. In these case studies, GIS-derived ranges of species are used to assess the relationship of biogeography with sea level, speciation and extinction rates, mass extinction survival, speciation mode, and invasive history of taxa. These case studies represent a subset of the potential for GIS analyses to examine paleontological patterns and contribute to improving understanding of the interaction between paleobiogeography, paleoecology, and evolution in the fossil record.

Type
Research Article
Copyright
Copyright © 2005 by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berry, J. K. 1995. Spatial Reasoning for Effective GIS. GIS World Books, Fort Collins, Colorado, 208 p.Google Scholar
Boucot, A. J. 1975. Evolution and Extinction Rate Controls. Elsevier, Amsterdam, 427 p.Google Scholar
Boucot, A. J., Johnson, J. G., and Talent, J. A. 1969. Early Devonian brachiopod zoogeography. Geological Society of America Special Paper 119, 113 p.Google Scholar
Brooks, D. R., and McLennan, D. A. 1991. Phylogeny, Ecology, and Behavior. University of Chicago Press, Chicago, 434 p.Google Scholar
Burrough, P. A., and McDonnell, R. A. 1998. Principles of Geographic Information Systems. Oxford University Press, Oxford, 193 p.Google Scholar
Chou, Y. H. 1997. Exploring spatial analysis in Geographic Information Systems. OnWord Press, Santa Fe, New Mexico, 474 p.Google Scholar
Dineley, D. L. 1984. Aspects of a Stratigraphic System: The Devonian. Macmillian Publishers, London, 223 p.Google Scholar
Droser, M. L., Bottjer, D. J., Sheehan, P. M., and McGhee, G. R. Jr. 2000. Decoupling the taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology, 28:675678.Google Scholar
Engler, R., Guisan, A., and Rechsteiner, L. 2004. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, 41:263274.Google Scholar
Enserink, M. 1999. Biological invaders sweep in. Science, 285:18341836.Google Scholar
ENVIRONMENTAL SYSTEMS RESEARCH INSTITUTE, INC. (ESRI). 1999. ArcView GIS 3.2. Redlands, California.Google Scholar
Feist, R. 1991. Late Devonian trilobite crises. Historical Biology, 5:197214.Google Scholar
Fergueson, C. A., Bodenbender, B. E., Hones, J. L., and Ahmed, K. 2001. Recording the fossil record: A GIS database of Middle Devonian fossils in the Michigan Basin. Geological Society of America Annual Meeting, 2000, Abstracts with programs, 109:A131.Google Scholar
Graham, R. W. 2000. FAUNMAP database: Filter effects from field to literature to database to analysis to interpretation. Geological Society of America Annual Meeting, 2000, Abstracts with programs, 109:A131.Google Scholar
Graham, R. W., Lundelius, E. L. Jr., Graham, M. A., Schroeder, E. K., Toomey, R. S. Iii, Anderson, E., Barnosky, A., Burns, J. A., Churcher, C. S., Grayson, D. K., Guthrie, R. D., Harington, C. R., Jefferson, G. T., Martin, L. D., McDonald, H. G., Morlan, R. E., Semken, H. A. Jr., Webb, S. D., Werdelin, L., and Wilson, M. C. 1996. Spatial response of mammals to late Quaternary environmental fluctuations. Science, 272:16011606.Google Scholar
Gurevitch, J., and Padilla, D. K. 2004. Are invasive species a major cause of extinction? Trends in Ecology and Evolution, 19:470473.Google Scholar
Johnson, C. J., Seip, D. R., and Boyce, M. S. 2004. A quantitative approach to conservation planning: Using resource selection functions to map the distribution of mountain caribou at multiple spatial scales. Journal of Applied Ecology, 41:238251.Google Scholar
Johnson, J. G., Klapper, G., and Sandberg, C. A. 1985. Devonian eustatic fluctuations in Euramerica. Geological Society of America Bulletin, 96:567587.Google Scholar
Juliusson, L., and Graham, R. 1999. Geographic information systems and vertebrate paleontology. Journal of Vertebrate Paleontology, 19(Suppl. To No. 3):56.Google Scholar
Kalvoda, J. 1990. Late Devonian-Early Carboniferous paleobiogeography of benthic Foraminifera and climatic oscillations, p. 183188. In Kauffman, E. G. and Walliser, O. H. (eds.), Extinction Events in Earth History. Springer-Verlag, New York.Google Scholar
Klapper, G. 1995. Preliminary analysis of Frasnian, Late Devonian conodont biogeography. Historical Biology, 10:103117.Google Scholar
Klapper, G, and Johnson, J. G. 1980. Endemism and dispersal of Devonian conodonts. Journal of Paleontology, 54:400455.Google Scholar
Lieberman, B. S. 2000. Paleobiogeography: Using Fossils to Study Global Change, Plate Tectonics, and Evolution. Kluwer Academic Press/Plenum Publishing, New York, 208 p.Google Scholar
Lieberman, B. S. 2003. Paleobiogeography: The relevance of fossils to biogeography. Annual Review of Ecology and Systematics, 34:5169.Google Scholar
Lieberman, B. S. and Eldredge, N. 1996. Trilobite biogeography in the Middle Devonian: geological processes and analytical methods. Paleobiology, 22:6679.Google Scholar
Mayr, E. 1942. Systematics and the Origin of Species. Columbia University Press, New York, 334 p.Google Scholar
McGhee, G. R. Jr. 1981. Evolutionary replacement of ecological equivalents in Late Devonian benthic marine communities. Palaeogeography, Palaeoclimatology, Palaeoecology, 34:267283.Google Scholar
McGhee, G. R. Jr. 1996. The Late Devonian Mass Extinction: The Frasnian/Famennian Crisis. Columbia University Press, New York, 303 p.Google Scholar
Oliver, W. A. Jr. 1976. Biogeography of the Devonian rugose corals. Journal of Paleontology, 50:365373.Google Scholar
Oliver, W. A. Jr. 1990. Extinctions and migrations of Devonian rugose corals in the Eastern Americas realm. Lethaia, 23:167178.Google Scholar
Oliver, W. A. Jr., and Pedder, A. E. H. 1994. Crises in the Devonian history of rugose corals. Paleobiology, 20:178190.Google Scholar
Peterson, A. T., and Vieglais, D. A. 2001. Predicting species invasions using ecological niche modeling: New approaches from bioinformatics attack a pressing problem. BioScience, 51:363371.Google Scholar
Raymond, A., and Mertz, C. 1995. Laurussian land-plant diversity during the Silurian and Devonian: Mass extinction, sampling bias, or both? Paleobiology, 21:7491.Google Scholar
Rode, A. L. 2001. Invasive species and mass extinction: A phylogenetic and biogeographic study of the Subclass Phyllocarida (Class Crustacea) during the Late Devonian Biodiversity Crisis. , University of Kansas, Lawrence, 234 p.Google Scholar
Rode, A. L., 2004. Phylogenetic revision of the Devonian bivalve, Leptodesma (Leiopteria). Yale University Postilla, 229:126.Google Scholar
Rode, A. L., and Lieberman, B. S. 2000. Using phylogenetics and GIS to investigate the role in invasive species in the Late Devonian mass extinction. Geological Society of America Annual Meeting, 2000, Abstracts with Programs, 32:368.Google Scholar
Rode, A. L., and Lieberman, B. S. 2002. Phylogenetic and biogeographic analysis of Devonian phyllocarid crustaceans. Journal of Paleontology, 76:271286.Google Scholar
Rode, A. L., and Lieberman, B. S. 2004. Using GIS to unlock the interactions between biogeography, environment, and evolution in middle and Late Devonian brachiopods and bivalves. Palaeogeography, Palaeoclimatology, Palaeogeography, 211:345359.Google Scholar
Rode, A. L., and Lieberman, B. S. 2005. Integrating biogeography and evolution using phylogenetics and PaleoGIS: A case study involving Devonian crustaceans. Journal of Paleontology, 79:267276.Google Scholar
Ross, M. I., and Scotese, C. R. 2000. PaleoGIS/Arcview 3.5. PALEOMAP Project, University of Texas, Arlington.Google Scholar
Rushton, S. P., Ormerod, S. J., and Kerby, G. 2004. New paradigms for modeling species distributions? Journal of Applied Ecology, 41:193200.Google Scholar
Scotese, C. R. 1998. PALEOMAP Animations. PALEOMAP Project, University of Texas, Arlington.Google Scholar
Scotese, C. R., and McKerrow, W. S. 1990. Revised world maps and introduction, p. 217277. In Scotese, C. R. and McKerrow, W. S., (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society of London Memoir 51.Google Scholar
Sepkoski, J. J. 1996. Patterns of Phanerozoic extinction: A perspective from global data bases, p. 3551. In Walliser, O. H., (ed.), Global Events and Event Stratigraphy in the Phanerozoic. Springer, Berlin.Google Scholar
Stigall Rode, A. L. 2005. Systematic revision of the Devonian brachiopods Schizophoria (Schizophoria) and “Schuchertella” from North America. Journal of Systematic Palaeontology 3(2): 133167.Google Scholar
Stigall Rode, A. L., and Lieberman, B. S. In press . Using environmental niche modelling to study the Late Devonian biodiversity crisis, p. xxxx. In Over, D. J., Morrow, J. R., and Wignall, P. B., (eds.), Understanding Late Devonian and Permian-Triassic Biotic and Climatic Events: Towards an Integrated Approach. Developments in Palaeontology and Stratigraphy, Elsevier, Amsterdam.Google Scholar
Stockwell, D., and Peters, D. 1999. The GARP modelling system: Problems and solutions to automated spatial prediction. International Journal of Geographical Information Science, 13:143158.Google Scholar
Stumm, E. C., and Chilman, R. B. 1969. Phyllocarid crustaceans from the Middle I Silica Shale of northwestern Ohio and southeastern Michigan. Contributions from the Museum of Paleontology, University of Michigan, 23:5371.Google Scholar
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasamus, B. F. N., Firreira De Siqueira, M., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., and Williams, S. E. 2004. Extinction risk from climate change. Nature, 427:145148.Google Scholar
Tucker, R. D., Bradley, D. C., Ver Straeten, C. A., Harris, A. G., Ebert, J. R., and McCutcheon, S. R. 1998. New U-Pb zircon ages and the duration and division of time. Earth and Planetary Science Letters, 158:175186.Google Scholar
Webby, B. D. 1992. Global biogeography of Ordovician corals and stromatoporoids, p. 261276. In Webby, B. D. and Laurie, J. R., (eds.), Global Perspectives on Ordovician Geology. A. A. Balkema, Rotterdam.Google Scholar
Wiley, E. O., and Mayden, R. L. 1985. Species and speciation in phylogenetic systematics, with examples from North American fish fauna. Annals of the Missouri Botanical Garden, 72:596635.Google Scholar
Wilson, R. J., Thomas, C. D., Fox, R., Roy, D. B., and Kunin, W. E. 2004. Spatial patterns in species distributions reveal biodiversity change. Nature, 432:393396.Google Scholar
Young, G. C. 1987. Devonian paleontological data and the Armorica problem. Palaeogeography, Palaeoclimatology, and Palaeoecology, 60:283304.Google Scholar