Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T20:29:46.077Z Has data issue: false hasContentIssue false

Changes in the Monoamine Containing Neurones of the Human Cns in Senile Dementia

Published online by Cambridge University Press:  29 January 2018

D. M. A. Mann
Affiliation:
Department of Pathology, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT
J. Lincoln
Affiliation:
Department of Pathology, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT
P. O. Yates
Affiliation:
Department of Pathology, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT
J. E. Stamp
Affiliation:
Department of Pathology, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT
S. Toper
Affiliation:
Department of Pathology, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT

Summary

In thirteen cases of senile dementia of the Alzheimer type severe loss of nerve cells from the locus caeruleus was frequently seen together with reductions in nucleolar volume and cytoplasmic RNA in surviving cells, averaging 14 and 21 per cent respectively. These histological findings were matched in two cases by biochemical measurements of loss of noradrenaline from all brain regions examined, ranging from 10 per cent in temporal cortex to 53 per cent in hypothalamus. By contrast, neither nucleolar volume nor cytoplasmic RNA was altered in cells of the substantia nigra, nor was dopamine content significantly altered in most regions. In vascular dementia neither noradrenaline nor dopamine metabolism was changed except in regions of local circulatory deficiency. These findings provide evidence of a primary degeneration of the noradrenergic system in Alzheimer type dementia.

Type
Research Article
Copyright
Copyright © The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Pathology, Oostersingel, 63, 9730–EZ, Groningen, Nederlands.

††

Present address: Department of Structural Biology, St George's Hospital Medical School, Cranmer Terrace, Tooting, London SW17 0RE.

References

Adolfsson, R., Gottfries, C. G., Roos, B. E. & Winblad, B. (1979) Changes in the brain catecholamines in patients with dementia of Alzheimer type. British Journal of Psychiatry, 135, 216–23.CrossRefGoogle ScholarPubMed
Bates, D., Weinshilboum, R. M., Campbell, R. J. & Sundt, T. M. (1977) The effect of lesions in the locus caeruleus on the physiological responses of the cerebral blood vessels in cats. Brain Research, 136, 431–43.CrossRefGoogle ScholarPubMed
Berger, B., Escourolle, R. & Moyne, M. A. (1976) Axones catécholaminergiques du cortex cérébral humain—observation en histofluorescence de biopsies cérébrales dont 2 cas de maladie d'Alzheimer. Revue Neurologique (Paris), 132, 183–94.Google Scholar
Bowen, D. M., White, P., Flack, R. H. A., Smith, C. B. & Davison, A. N. (1974) Brain-decarboxylase activities as indices of pathological change in senile dementia. Lancet, i, 1247–9.Google Scholar
Bowen, D. M., Smith, C. B., White, P. & Davison, A. N. (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain, 99, 459–96.CrossRefGoogle ScholarPubMed
Bowen, D. M., Spillane, J. A., Curzon, G., Meier-Ruge, W., White, P., Goodhardt, M. J., Iwangoff, P. & Davison, A. N. (1979) Accelerated ageing or selective neuronal loss as an important cause of dementia. Lancet, i, 1114.Google Scholar
Cooper, J. R., Bloom, F. E. & Roth, R. H. (1974) Biochemical Basis of Neuropharmacology, New York: Oxford University Press.Google Scholar
Crow, T. J., Deakin, J. F. W., File, S. E., Longden, A. & Wendlandt, S. (1978) The locus caeruleus noradrenergic system—evidence against a role in attention, habituation, anxiety and motor activity. Brain Research, 155, 249–61.CrossRefGoogle ScholarPubMed
Davies, P. & Maloney, A. J. F. (1976) Selective loss of central cholinergic neurones in Alzheimer's disease. Lancet, ii, 1403.Google Scholar
Davies, P. & Verth, A. H. (1978) Regional distribution of muscarinic acetylcholine in normal and Alzheimer type dementia brains. Brain Research, 178, 385–92.Google Scholar
Dayan, A. D. & Ball, M. J. (1973) Histometric observations on the metabolism of tangle bearing neurones. Journal of Neurological Sciences, 19, 433–6.CrossRefGoogle Scholar
Edvinsson, L., Lindvall, M., Nielsen, K. C. & Owman, Ch. (1973) Are brain vessels innervated also by central (non sympathetic) adrenergic neurones. Brain Research, 63, 496–9.Google Scholar
Fisher, R. H. (1972) Urinary excretion of homovanillic acid and 4hydroxy-3methoxy mandelic acid in the elderly demented. Gerontologia Clinica, 14, 172–5.CrossRefGoogle ScholarPubMed
Fonnum, F. (1973) Recent developments in biochemical investigations of cholinergic transmission. Brain Research, 62, 497507.CrossRefGoogle ScholarPubMed
Golodetz, L. & Unna, P. G. (1909) Schmorl's technique for melanin. In Carleton's Histological Technique (eds. Drury, R. A. and Wallington, E. A.). London: Oxford University Press.Google Scholar
Gottfries, C. G., Gottfries, I. & Roos, B. E. (1969) Homovanillic acid and 5hydroxyindoleacetic acid in CSF of patients with senile dementia, presenile dementia and Parkinsonism. Journal of Neurochemistry, 16, 1341–5.CrossRefGoogle Scholar
Gottfries, C. G., Kjallquist, A., Ponten, U., Roos, B. E. & Sundbarg, G. (1974) C.S.F. pH, monoamine and glucolytic metabolites in Alzheimer's disease. British Journal of Psychiatry, 124, 280–7.Google Scholar
Grubb, R. L., Raichle, M. E., Gado, M. H., Eichling, J. O. & Hughes, C. P. (1977) Cerebral blood flow, O2 utilization and blood volume in dementia. Neurology (Minneapolis), 27, 905–10.CrossRefGoogle Scholar
Hachinski, V. C., Iliff, L. D., Duboulay, G. H., McAllister, V. L., Marshall, J., Ross-Russel, R. W. & Symon, L. (1975) Cerebral blood flow in dementia. Archives of Neurology (Chicago), 32, 632–7.CrossRefGoogle ScholarPubMed
Hartman, B. K. & Udenfriend, S. (1972) The application of immunological techniques to the study of enzymes regulating catecholamine synthesis and degradation. Pharmacological Reviews, 24, 311–30.Google Scholar
Hornykiewicz, O. (1966) Dopamine and brain function. Pharmacological Reviews, 18, 925–64.Google ScholarPubMed
Ingvar, D. H. & Gustafson, L. (1970) Regional cerebral blood flow in organic dementia with early onset. Acta Neurologica Scandinavica, 46, (Supplementum 43), 4273.Google Scholar
Kobayashi, R. M., Palkovits, M., Kopin, J. & Jacobowitz, D. M. (1974) Biochemical mapping of noradrenergic nerves arising from rat locus caeruleus. Brain Research, 77, 269–79.Google Scholar
Mann, D. M. A. & Sinclair, K. G. A. (1978) The quantitative assessment of lipofuscin pigment, cytoplasmic RNA and nucleolar volume in senile dementia. Neuropathology and Applied Neurobiology, 4, 129–35.CrossRefGoogle ScholarPubMed
Mann, D. M. A. & Yates, P. O. (1974a) Lipoprotein pigments—their relationship to ageing in the human nervous system. I. The lipofuscin content of nerve cells. Brain, 97, 481–8.Google Scholar
Mann, D. M. A. & Yates, P. O. (1974b) Lipoprotein pigments—their relationship to ageing in the human nervous system. II. The melanin content of pigmented nerve cells. Brain, 97, 489–98.CrossRefGoogle ScholarPubMed
Mann, D. M. A. & Yates, P. O. (1974c) Motor Neurone Disease—the nature of the pathogenic mechanism. Journal of Neurology, Neurosurgery and Psychiatry, 37, 1036–46.CrossRefGoogle Scholar
Mann, D. M. A. & Yates, P. O. (1979) The effects of ageing on the pigmented nerve cells of the human locus caeruleus and substantia nigra. Acta Neuropathologica (Berlin), 47, 93–7.Google Scholar
Mann, D. M. A., Yates, P. O. & Barton, C. M. (1977a) Neuromelanin and RNA in cells of the substantia nigra. Journal of Neuropathology and Experimental Neurology, 36, 379–83.CrossRefGoogle Scholar
Mann, D. M. A., Yates, P. O. & Barton, C. M. (1977b) Cytophotometric mapping of neuronal changes in senile dementia. Journal of Neurolcgy, Neurosurgery and Psychiatry, 40, 299302.CrossRefGoogle ScholarPubMed
Mann, D. M. A., Yates, P. O. & Stamp, J. E. (1978) Relationship between lipofuscin pigment and ageing in the human nervous system. Journal of the Neurological Sciences, 37, 8393.CrossRefGoogle ScholarPubMed
Olson, L. & Fuxe, K. (1971) On the projections from the locus caeruleus noradrenaline neurones: the cerebellar innervation. Brain Research, 28, 165–71.CrossRefGoogle ScholarPubMed
Perry, E. K., Perry, R. H., Blessed, G. & Tomlinson, B. E. (1977a) Necropsy evidence of central cholinergic deficits in senile dementia. Lancet, i, 189.Google Scholar
Perry, E. K., Gibson, P. H., Blessed, G., Perry, R. H. & Tomlinson, B. E. (1977b) Neurotransmitter enzyme abnormalities in senile dementia. Journal of the Neurological Sciences, 34, 247–65.CrossRefGoogle ScholarPubMed
Perry, E. K., Perry, R. H., Blessed, G. & Tomlinson, B. E. (1978a) Changes in brain cholinesterase in senile dementia of Alzheimer type. Neuropathology and Applied Neurobiology, 4, 273–7.Google Scholar
Perry, E. K., Tomlinson, B. E., Blessed, G., Bergmann, K., Gibson, P. H. & Perry, R. H. (1978b) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. British Medical Journal, ii, 1457–9.Google Scholar
Raichle, M. E., Hartman, B. K., Eichling, J. O. & Sharpe, L. G. (1975) Central noradrenergic regulation of cerebral blood flow and vascular permeability. Proceedings of the National Academy of Sciences (Washington), 72, 3726–30.Google Scholar
Reisine, T. D., Yamamura, H. I., Bird, E. D., Spokes, E. & Enna, S. J. (1978) Pre- and post synaptic neurochemical alterations in Alzheimer's disease. Brain Research, 159, 477–81.CrossRefGoogle Scholar
Shea, J. R. (1970) A method for the in situ estimation of absolute amount of RNA using Azure B. Journal of Histochemistry and Cytochemistry, 18, 143–52.Google Scholar
Ungerstedt, U. (1971) Stereotaxic mapping of the monoamine pathways of the rat brain. Acta Physiologica Scandinavica (Supplementum), 367, 1148.Google Scholar
Versteeg, D. H. G., Van der Gogten, J., De Jong, W. & Palkovits, M. (1976) Regional concentrations of noradrenaline and dopamine in rat brain. Brain Research, 113, 563–74.CrossRefGoogle ScholarPubMed
Watson, W. E. (1968) Observations on the nucleolar and total cell body nucleic acid of injured nerve cells. Journal of Physiology (London), 196, 655–76.Google Scholar
Welch, A. S. & Welch, B. L. (1969) Solvent extraction method for simultaneous determination of norepinephrine, dopamine, serotonin and 5hydroxyindoleacetic acid in a single mouse brain. Analytical Biochemistry, 30, 161–79.CrossRefGoogle Scholar
White, P., Goodhardt, M. J., Keet, J. P., Hiley, C. R., Carrasco, L. H., William, I. E. I. & Bowen, D. M. (1977) Neocortical cholinergic neurones in elderly people. Lancet, i, 668–71.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.