I review here recent advances in our understanding of magnetic activity in pre-main sequence (PMS) protostars and T Tauri stars. Results are based on recent imaging, spectroscopic and temporal studies of nearby star forming regions from the Chandra X — ray Observatory and XMM — Newton, including a first look at an ultradeep Chandra exposure of the Orion Nebula Cluster.
Pre-main sequence stars exhibit a high level of X-ray emission dominated by a bewildering variety of magnetic reconnection flares. Activity is linked to bulk stellar properties — Lbol, mass, surface area or volume — rather than rotation. This suggests that dynamo processes in deeply convective PMS stars may fundamentally differ from the tachocline dynamo operating in main sequence stars.
X-rays and MeV particles from magnetic flares will affect the circumstellar environment in PMS systems, particularly the protoplanetary disk. X-ray emission may influence: disk ionization, turbulence and viscosity; Jovian planet formation and migration; the production of meteoritic isotopes and melting of meteoritic chondrules; the heating and chemistry of the disk. X-ray surveys are also effective in locating post-T Tauri stars for disk evolution studies.