Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T06:52:43.976Z Has data issue: false hasContentIssue false

Spectroscopy of Brown Dwarf Candidates in the NGC 1333 Molecular Cloud

Published online by Cambridge University Press:  26 May 2016

Bruce Wilking
Affiliation:
Department of Physics and Astronomy, University of Missouri-St. Louis, 8001 Natural Bridge Road, St. Louis, MO 63121
Ayman Mikhail
Affiliation:
Department of Physics and Astronomy, University of Missouri-St. Louis, 8001 Natural Bridge Road, St. Louis, MO 63121
Glenn Carlson
Affiliation:
Department of Physics and Astronomy, University of Missouri-St. Louis, 8001 Natural Bridge Road, St. Louis, MO 63121
Michael R. Meyer
Affiliation:
Steward Observatory, The University of Arizona, Tucson, AZ 85721
Thomas Greene
Affiliation:
NASA/Ames Research Center, M.S. 245–6, Moffett Field, CA 94035

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present an analysis of low-resolution infrared spectra for 25 brown dwarf candidates in the NGC 1333 molecular cloud. Candidates were chosen on the basis of their association with the high column density cloud core, and near-infrared fluxes and colors. We compare the depths of water vapor absorption bands in our candidate objects with a grid of dwarf, subgiant, and giant standards to determine spectral types which are independent of reddening. These data are used to derive effective temperatures and bolometric luminosities which, when combined with theoretical tracks and isochrones for pre-main sequence objects, enable us to estimate masses and ages. Depending on the models considered, a total of 9 to 20 brown dwarfs are identified with a median of age of <1 Myr.

Type
Part 2. Observations of Recently Born Substellar Objects
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Aspin, C., Sandell, G., & Russell, A. 1994, A&A, 106, 165 Google Scholar
Baraffe, I., Chabrier, G., Allard, F., Hauschildt, P. 1998, A&A, 337, 403 Google Scholar
Belikov, A., Kharchenko, N., Piskunov, A., Schilbach, E., & Scholz, R.-D. 2002, A&A, 387, 117 Google Scholar
Burrows, A., Marley, M., Hubbard, W. B., Lunine, J. L., Guillot, T., Saumon, D., Freedman, R., Sudarsky, D., & Sharp, C. 1997, ApJ, 491, 856 Google Scholar
Cushing, M., Tokunaga, A., & Kobayashi, N. 2000, AJ, 119, 3019 Google Scholar
D'Antona, F. & Mazzitelli, I. 1997, in Cool Stars in Clusters and Associations, eds. Pallavicini, R. & Micela, G., Mem. S. A. It., 68, n. 4. (DM97) Google Scholar
D'Antona, F. & Mazzitelli, I. 1998, priv. comm.Google Scholar
de Zeeuw, P., Hoogerwerf, R., & de Bruijne, J. 1999, AJ, 117, 354 Google Scholar
Fleming, T., Schmitt, J., & Giampapa, M. 1995, ApJ, 450, 401 Google Scholar
Getman, K., Feigelson, E., Townsley, L., Bally, J., Lada, C., & Reipurth, B. 2002, ApJ, in press Google Scholar
Herbig, G. 1974, Lick Obs. Bull. No. 658 Google Scholar
Itoh, Y., Tamura, M., & Tokunaga, A. 2002, PASJ, in press Google Scholar
Jones, H., Longmore, A., Jameson, R. & Mountain, C. 1994, MNRAS, 267, 413 CrossRefGoogle Scholar
Jones, H., Longmore, A., Allard, F., Hauschildt, P., Miller, S., & Tennyson, J. 1995, MNRAS, 277, 767 Google Scholar
Lada, C., Alves, J., & Lada, E. 1996, AJ, 111, 1964 Google Scholar
Loren, R. 1976, ApJ, 209, 466 Google Scholar
Lucas, P., Roche, P., Allard, F. & Hauschildt, P. 2001, MNRAS, 326, 695 Google Scholar
Najita, J., Tiede, G., & Carr, J. 2000, ApJ, 541, 977 Google Scholar
Sargent, A. 1979, ApJ, 233, 163 Google Scholar
Strom, S., Vrba, F., & Strom, K. 1976, AJ, 81, 314 Google Scholar
Wilking, B., Greene, T., & Meyer, M. 1999, AJ, 117, 469 (WGM99) Google Scholar
Wilking, B., Meyer, M., Greene, T., Mikhail, A., & Carlson, G. 2002, in prep. Google Scholar