Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T05:03:57.262Z Has data issue: false hasContentIssue false

Small-scale Substructure in Dark Matter Haloes: Where Does Galaxy Formation Come to an End?

Published online by Cambridge University Press:  26 May 2016

J. E. Taylor
Affiliation:
Astrophysics, University of Oxford Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK
J. Silk
Affiliation:
Astrophysics, University of Oxford Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK
A. Babul
Affiliation:
Physics and Astronomy, University of Victoria Elliott Building 3800 Finnerty Road, Victoria, BC, V8P 1A1, Canada

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Models of structure formation based on cold dark matter predict that most of the small dark matter haloes that first formed at high redshift would have merged into larger systems by the present epoch. Substructure in present-day haloes preserves the remains of these ancient systems, providing the only direct information we may ever have about the low-mass end of the power spectrum. We describe some recent attempts to model halo substructure down to very small masses, using a semi-analytic model of halo formation. We make a preliminary comparison between the model predictions, observations of substructure in lensed systems, and the properties of local satellite galaxies.

Type
Part 3: Central Density Cusps, Thin Disks, and Dark Halo Substructure
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Benson, A. J., Lacey, C. G., Baugh, C. M., Cole, S., & Frenk, C. S. 2002, MNRAS, 333, 156.Google Scholar
Bullock, J. S., Kravtsov, A. V., & Weinberg, D. H. 2000, ApJ, 539, 517.CrossRefGoogle Scholar
Dalal, N., & Kochanek, C. S. 2002, ApJ, 572, 25.CrossRefGoogle Scholar
Dekel, A., & Silk, J. 1986, ApJ, 303, 39.Google Scholar
Ghigna, S., et al. 2000, ApJ, 544, 616.CrossRefGoogle Scholar
Hayashi, E., Navarro, J. F., Taylor, J. E., Stadel, J., & Quinn, T. 2003, ApJ, 584, 541.CrossRefGoogle Scholar
Kauffmann, G., White, S. D. M., & Guiderdoni, B. 1993, MNRAS, 264, 201.CrossRefGoogle Scholar
Klypin, A., Gottlöber, S., Kravtsov, A. V., & Khokhlov, A. M. 1999, ApJ, 516, 530.Google Scholar
Klypin, A., Zhao, H., & Somerville, R. S. 2002, ApJ, 573, 597.CrossRefGoogle Scholar
Metcalf, R. B. 2002, ApJ, 580, 696.Google Scholar
Metcalf, R. B., Moustakas, L. A., Bunker, A. J., Parry, I. R. 2003, astro-ph/0309738.Google Scholar
Moore, B. 2000, astro-ph/0009247.Google Scholar
Moore, B., Governato, F., Quinn, T., Stadel, J., & Lake, G. 1998, ApJ, 499, L5.Google Scholar
Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., & Tozzi, P. 1999, ApJ, 524, L19.Google Scholar
Stoehr, F., White, S. D. M., Tormen, G., & Springel, V. 2002, MNRAS, 335, L84.CrossRefGoogle Scholar
Taylor, J. E. 2001, Ph.D. thesis, University of Victoria.Google Scholar
Taylor, J. E., & Babul, A. 2001, ApJ, 559, 716.CrossRefGoogle Scholar
Taylor, J. E., & Babul, A. 2003, MNRAS, submitted (astro-ph/0301612).Google Scholar
White, S. D. M. 1976, MNRAS, 177, 717.Google Scholar
White, S. D. M. 2000, ITP conference presentation, (online.itp.ucsb.edu/online/galaxy_c00/white).Google Scholar
White, S. D. M. & Rees, M. J. 1978, MNRAS, 183, 341.Google Scholar