Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T03:28:03.619Z Has data issue: false hasContentIssue false

Helioseismology and the Solar Neutrino Problem

Published online by Cambridge University Press:  08 February 2017

H. M. Antia
Affiliation:
Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
S. M. Chitre
Affiliation:
Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The precisely measured frequencies of solar oscillations provide us with a unique tool to probe the solar interior with sufficient accuracy. These frequencies are principally determined by the dynamical quantities like sound speed, density or the adiabatic index of the solar material and a primary inversion of the observed frequencies yields the sound speed and density profiles inside the Sun (Gough et al. 1996). The equations of thermal equilibrium enable us to determine the temperature and chemical composition profiles, but for this additional prescriptions regarding the input physics (i.e., opacities, equation of state and nuclear energy generation rate) are required (Shibahashi 1993; Antia & Chitre 1995; Shibahashi & Takata 1996; Kosovichev 1996). This information in turn can be used to calculate the neutrino fluxes, and the seismic models can thus be used to explore the possibility of an astrophysical solution to the solar neutrino problem (Roxburgh 1996; Antia & Chitre 1997).

Type
I. Global Structure and Evolution of the Solar and Stellar Interior
Copyright
Copyright © Kluwer 1998 

References

Antia, H. M. 1996, A&A 307, 609 Google Scholar
Antia, H. M. & Chitre, S. M. 1995, ApJ 442, 434 Google Scholar
Antia, H. M. & Chitre, S. M. 1997, MNRAS 289, LI Google Scholar
Bahcall, J. N. 1989, Neutrino Astrophysics, Cambridge University Press, Cambridge, UK Google Scholar
Bahcall, J. N. & Pinsonneault, M. H. 1995, Rev. Mod. Phys. 67, 781 (BP95)Google Scholar
Basu, S. 1997, MNRAS 288, 572 Google Scholar
Christensen-Dalsgaard, J., Däppen, W. et al. 1996, Science 272, 1286 Google Scholar
Gough, D. O., Kosovichev, A. G., Toomre, J. et al., 1996, Science 272, 1296 Google Scholar
Heeger, Robertson 1196, Phys. Rev. Lett. 77, 3720 CrossRefGoogle Scholar
Ivanov, A. N., Troitskaya, N. I., Faber, M. & Oberhummer, H., 1997 Nucl. Phys. A 617, 414 Google Scholar
Kosovichev, A. G. 1996, Bull. Astron. Soc. India 24, 355 Google Scholar
Richard, O., Vauclair, S., Charbonnel, C., Dziembowski, W. A., 1996, A&A 312, 1000 Google Scholar
Roxburgh, I. W., 1996, Bull. Astron. Soc. India 24, 89 Google Scholar
Shibahashi, H. 1993, in Frontiers of Neutrino Astrophysics, eds. Suzuki, Y. & Nakamura, K., Universal Academy Press, Tokyo, p. 93 Google Scholar
Shibahashi, H. & Takata, M. 1996, PAS J 48, 377 Google Scholar