Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T18:24:59.808Z Has data issue: false hasContentIssue false

Filament Fragmentation

Published online by Cambridge University Press:  13 May 2016

Shu-ichiro Inutsuka
Affiliation:
Division of Theoretical Astrophysics, National Astronomical Observatory, Mitaka, Tokyo 181–8588, Japan
Toru Tsuribe
Affiliation:
Department of Physics, Kyoto University Kitashirakawa, Sakyo-ku, Kyoto, 606–8502, Japan

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The formation and evolution processes of magnetized filamentary molecular clouds are investigated in detail by linear stability analyses and non-linear numerical calculations. A one-dimensionally compressed self-gravitating sheet-like cloud breaks up into filamentary clouds. The directions of the longitudinal axes of the resulting filaments are perpendicular to the directions of magnetic field lines unless the column density of the sheet is very small. These magnetized filaments tend to collapse radially without characteristic density, length, and mass scale for the further fragmentation during the isothermal phase. The characteristic minimum mass for the final fragmentation is obtained by the investigation of thermal processes. The essential points of the above processes are analytically explained in terms of the basic physics. A theory for the expected mass function of dense molecular cloud cores is obtained. The expected mean surface density of companions of dense cores is also discussed.

Type
IX. Theoretical Context - Detailed Calculations
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Bate, M. R., Clarke, C. J., & McCaughrean, M. J. 1998, MNRAS, 297, 1163.CrossRefGoogle Scholar
Bond, J. R., Cole, S., Efstathiou, G., & Kaiser, N. 1991, ApJ, 379, 440.Google Scholar
Boss, A. P. 1988, ApJ, 331, 370.Google Scholar
Boss, A. P., Fisher, R. T., Klein, R. I., & McKee, C. F. 2000, ApJ, 528, 325.Google Scholar
Bodenheimer, P., Burkert, A., Klein, R. I., & Boss, A. P. 2000, Protostars and Planets IV, ed. Mannings, V., Boss, A. P. & Russell, S. S. (Tucson: University of Arizona Press), 675.Google Scholar
Elmegreen, B. G., & Elmegreen, D. M. 1978, ApJ, 220, 1051.CrossRefGoogle Scholar
Gradwin, P. P., Kitsionas, S., Boffin, H. M. J., & Whitworth, A. P. 1999, MNRAS, 302, 305.Google Scholar
Heiles, C., Goodman, A., McKee, C., Zweibel, E. G. 1993, Protostars and Planets III, ed. Levy, E. H. & Linine, J. I., (Tucson: University of Arizona Press), 279.Google Scholar
Inutsuka, S., & Miyama, S. M. 1992, ApJ, 388, 392.CrossRefGoogle Scholar
Inutsuka, S., & Miyama, S. M. 1997, ApJ, 480, 681.CrossRefGoogle Scholar
Inutsuka, S. 2000, in preparation.Google Scholar
Larson, R. B. 1995, MNRAS, 272, 213.Google Scholar
Low, C. & Lynden-Bell, D. 1976, MNRAS, 176, 367.Google Scholar
Lubow, S. H., & Pringle, J. E. 1993, MNRAS, 263,701.CrossRefGoogle Scholar
Masunaga, H., Miyama, S.M., & Inutsuka, S. 1998, ApJ, 495, 346.Google Scholar
Masunaga, H., & Inutsuka, S. 1999, ApJ, 510, 822.Google Scholar
Masunaga, H., & Inutsuka, S. 2000, ApJ, 531, 350.Google Scholar
Miyama, S. M., Narita, S., & Hayashi, C. 1987a, Prog. Theor. Phys., 78, 1051.Google Scholar
Miyama, S. M., Narita, S., & Hayashi, C. 1987b, Prog. Theor. Phys., 78, 1273.Google Scholar
Motte, F., Andre, P., & Neri, R. 1998, A&A, 336, 150.Google Scholar
Nagai, T., Inutsuka, S., & Miyama, S. M. 1998, ApJ, 506, 306.Google Scholar
Nagasawa, M. 1987, Prog. Theor. Phys., 77, 635.Google Scholar
Nakajima, Y., Tachihara, K., Hanawa, T., & Nakano, M. 1998, ApJ, 497, 721.Google Scholar
Peacock, J. A., & Heavens, A. F. 1990 MNRAS, 243, 133.Google Scholar
Press, W. H., & Schechter, P. 1974, ApJ, 187, 425.Google Scholar
Rees, M. J. 1976, MNRAS, 176, 483.CrossRefGoogle Scholar
Onishi, T., Mizuno, A., Kawamura, A., & Fukui, Y. 1999 Star Formation 1999, ed. Nakamoto, T., (NROJ), 153.Google Scholar
Oganesyan, R. S. 1960, AZh, 37, 665 (Soviet Ast., 4. 634).Google Scholar
Ostriker, J. 1964, ApJ, 140, 1056.Google Scholar
Silk, J. 1977, ApJ, 214, 152.Google Scholar
Simon, M. 1997, ApJ, 482, L81.Google Scholar
Testi, L., & Sargent, A. I. 1998, ApJ, 508, L91.Google Scholar
Truelove, J. K., Klein, R. I., McKee, C. F., Holliman, J. H. II, Howell, L. H., & Greenough, J. A. 1997, ApJ, 489, L179.Google Scholar
Tsuribe, T., & Inutsuka, S. 1999a, ApJ, 523, L155.Google Scholar
Tsuribe, T., & Inutsuka, S. 1999b, ApJ, 526, 307.CrossRefGoogle Scholar
Tsuribe, T., & Inutsuka, S. 2000, in preparation.Google Scholar
Yano, T., Nagashima, M., & Gouda, N. 1996, ApJ, 466, 1.Google Scholar