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Abstract. The formation and evolution processes of magnetized fil-
amentary molecular clouds are investigated in detail by linear stability
analyses and non-linear numerical calculations. A one-dimensionally com-
pressed self-gravitating sheet-like cloud breaks up into filamentary clouds.
The directions of the longitudinal axes of the resulting filaments are per-
pendicular to the directions of magnetic field lines unless the column
density of the sheet is very small. These magnetized filaments tend to
collapse radially without characteristic density, length, and mass scale
for the further fragmentation during the isothermal phase. The char-
acteristic minimum mass for the final fragmentation is obtained by the
investigation of thermal processes. The essential points of the above pro-
cesses are analytically explained in terms of the basic physics. A theory
for the expected mass function of dense molecular cloud cores is obtained.
The expected mean surface density of companions of dense cores is also
discussed.

1. Introduction

At present most of theoretical works on the binary formation mechanism are
focussed on the evolution of an isolated cloud whose mass is about one Jeans
mass (see, e.g., the reference of Bodenheimer et al. 2000). Their results do not
seem to successfully produce binaries with intermediate and large separation
(Truelove et al. 1997; Tsuribe & Inutsuka 1999a,b,2000·; Boss et al. 2000; see
also p.184 of the poster booklet). On larger scales, star forming regions are not
isolated and show remarkable filamentary structures. Although it is difficult
to know the strength of the magnetic field, their projected position angles are
observed extensively in star forming regions. For example in the Taurus dark
cloud, the magnetic fields are perpendicular to the filamentary structures (see
e.g., Heiles et al. 1993). This short article is intended to explain the formation
and evolution processes of such filamentary structures in magnetized molecular
clouds, and to discuss possible consequence to the binary formation.
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2. The Formation of Filaments

First we describe how filamentary structures form. We adopt a scenario of "in-
duced star formation" in which a molecular cloud is, at first, one-dimensionally
compressed or swept up into sheet-like configuration. Many kinds of compres-
sional mechanisms are expected: supernova remnants and winds from massive
stars, etc. A self-gravitating sheet-like cloud is unstable and fragments into
smaller clouds. The character of this gravitational instability is investigated by
many authors (see the reference of Nagai, Inutsuka, & Miyama 1998). Among
them, Miyama, Narita, & Hayashi (1987a,b) studied the fragmentation process
of a non-magnetized sheet-like cloud and have shown that in general a sheet-like
cloud fragment into filamentary clouds. Nagai et al. (1998) investigated the ef-
fect of magnetic fields on this filamentary tendency and found that the resulting
configuration depends on the extent of the external pressure of the sheet-like
cloud. The essence of the mechanism is explained in this section.

In a paper by Nagai et al. (1998), perturbations of a pressure-confined
isothermal gas layer with uniform magnetic fields are investigated in the linear
regime. The unperturbed magnetic field lines are parallel to the midplane of the
layer. For the layer with a thickness much larger than the pressure scale height H
(= cs[21fGPc]- 1/2 where Cs is the isothermal sound speed and Pc is the midplane
density), perturbations whose wave vector is parallel to the magnetic fields grow
faster than those perpendicular to the fields. Therefore the layer fragments into
filaments, and the direction of longitudinal axis of each filament is perpendicular
to the magnetic field lines. On the other hand, the layer with a thickness much
smaller than H becomes more unstable for perturbations perpendicular to the
magnetic fields. In this case it fragments into filaments, and the direction of
longitudinal axis of each filament is parallel to the magnetic field lines. In this
way, the fragmentation direction is determined only by the thickness (and hence,
the surface density) of the sheet-like cloud, and not by the strength of the
magnetic field.

The reason for the difference of the fragmentation processes can be ex-
plained as follows. We take the midplane of the layer as the x-y plane of the
Cartesian coordinates. k = (kx , ky ) is the wave vector of the normal mode.
The z-axis measures the distance from the midplane. The surface density of the
unperturbed sheet is a(z) = 2 Joz p(z')dz'.

Suppose that the unperturbed magnetic field lines are in the x-direction,
and let us consider two layers as the extreme cases.

A a geometrically thick layer with the boundary Zb » H at which the external
pressure is much smaller than the midplane pressure (Pext = P(Zb) « Pc).
In this case a(zb) ~ a(oo) = 2pcH.

B a geometrically thin layer with the boundary Zb « Hand Pext = P(Zb) ~ Pc.
In this case a(zb) « a(oo).

We take the same midplane density Pc and pressure Pc for the two layers. In
both layers, the growth time tg (the inverse of growth rates) of the most unstable
linear perturbation is on the order of the free-fall time, i.e., tg f'J JGpc, because
the fragmentation is due to self-gravity. The separations of fragments or the
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wavelength ,\ of the eigenfunction of the most unstable perturbations are a few
times the effective thickness of the layers.

The fragmentation of a layer A is as follows: Within the growth time, the
sound waves can barely propagate the effective width (f'J 2H) in the z-direction,
and propagate the length ,\ inside the fragments in the x- or y- direction.

(1)

Thus, the effect of pressure is not overwhelming and the fragmentation is through
straightforward compressional motion of the isothermal gas. In this case the
magnetic pressure impedes the motion in the y-direction, because the y-direction
motion has to compress the magnetic field lines. Therefore the growth rate of
the perturbation with ky == 0 is greater than that of kx == 0 .

The fragmentation of a layer B is as follows: Within the growth time, the
sound wave can propagate many times in any direction inside the fragment,

(2)

Thus the effect of pressure is substantial and smooth out the density perturba-
tion so that the most unstable mode behaves as if it is of incompressible gas.
This incompressional motion of the most unstable mode of compressible gas is
a key to understand the physics at hand. The property itself is observed in
the literature (for sheet, see e.g., Elmegreen & Elmegreen 19J8; Miyama et al.
1987a; Lubow & Pringle 1993; Nagai et al. 1998; for cylinder, see Nagasawa
1987; Inutsuka & Miyama 1992). In the case of incompressible gas, however,
the x-direction motions suffer from the tension of magnetic field lines and the
y-direction motions do not suffer from the magnetic field. Thus, the magnetic
field affects the motion in just opposite sense compared with the case A. In this
case, the growth rate of the perturbation with kx == 0 is greater than that of
ky == 0 (Oganesyan 1960).

In the case of the fragmentation with small column density and high external
pressure, the axes of the resulting filaments are parallel to the magnetic field
lines. The compressional motion is negligible and the resulting filaments are
stable against radial collapse. Such quasi-equilibrium filaments may possibly
break up into pieces again mainly through the motion in the axis direction
of filaments, depending on the strength of the magnetic field. The resulting
nearly spherical clumps, however, will not collapse into stars because the mass
of each clump tends to be less than the Bonner-Ebert sphere. Thus, this case
does not seem to be related to active star formation. Therefore, hereafter we
will concentrate on the evolution of the filament where magnetic field lines are
perpendicular to the axis of the filament

3. The Evolution of Filaments

In the previous section, the dynamical fragmentation of the sheet-like cloud is
investigated in terms of the instability of the equilibrium sheet. This is justified
because one-dimensional compression always provides quasi-equilibrium sheet-
like configuration (see below).

It is important to distinguish a remarkable difference between a planar
collapse and a cylindrical collapse. Consider a one-dimensional planar collapse
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(3)

(5)

in which the half-thickness, Zb, of a sheet-like cloud is decreasing. The forces
per unit mass due to pressure and gravity are as follows:

8P c; -2 D 8<p G -1
Fp == -- f'V p- ex: Zb' I'a == -P8z f'V -p a ex: Zb ,

8z Zb

Therefore a planar collapse is inevitably halted by pressure forces when the
thickness becomes sufficiently small..On the other hand, during a cylindrical
collapse in which the radius or the scale height, R, of the cylinder is decreasing,
the two forces take the following forms:

8P c; -3 8<p cs«; -3 ( )
Fp == - 8r f'V PR ex: R , Fa == -p 8z f'V -p R ex: R, 4

where Mline is the mass per unit length (line-mass), M line == foRb 21rprdr. In the
isothermal case, which is very important in the theory of star-formation, the
above two forces have the same dependence to the radius. Therefore, radial
collapse cannot be halted by the pressure if the gravity is sufficiently large at
the beginning. The critical line-mass corresponding to an isothermal cylindrical
equilibrium is 2c; / G (Ostriker 1964) which depends only on the temperature.
Hence, a filamentary isothermal gas cloud cannot be in equilibrium for any radial
density distribution and eventually collapses unless its line-mass is smaller than
the above value. This collapse of isothermal filaments with various line-masses
was described in terms of the one-parameter family of self-similar solutions (In-
utsuka & Miyama 1992). In general, the fragmentation of a sheet-like cloud
produces filaments whose line-mass is about twice the critical value (see e.g.,
eq.[4.1] of Miyama et ale 1987). Therefore within actual filaments, equilibrium
is overly idealized state.

We must study massive collapsing filaments to determine the evolution of
actual interstellar molecular clouds. This line of work is done by Inutsuka &
Miyama (1992,1997) for non-magnetized filaments, and by Inutsuka (2000) for
magnetized filaments where the magnetic fields are perpendicular to the longi-
tudinal axes of the filaments. Such filaments with transverse magnetic fields are
predicted to form as a result of the fragmentation of parental sheet-like clouds,
and expected to be important in the context of star formation.

The extensive sets of linear stability analyses and non-linear numerical
calculations to study the collapse and fragmentation processes of magnetized
isothermal filamentary molecular clouds are done by Inutsuka (2000). While
details are described elsewhere, the most important result is explained in this
subsection.

Consider the evolution of a massive isothermal filament with magnetic field
perpendicular to it. The numerical result shows that this massive filament with
perpendicular magnetic fields continues its radial collapse unless the strength of
the magnetic field is so large to stop the collapse from the beginning. This result
can be explained in terms of the following simple argument. Let us consider
again homologous cylindrical collapse in which the radius or the scale height, R,
of the cylinder is decreasing. The magnetic flux density and the magnetic force
per unit mass scales as

B ,...., Bo~ , FM = - a:2

,...., B1~~ ex: R-3
•
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This scaling is again the same as the scaling of the gravity (see eq. [4]). Therefore,
if the gravity is initially greater than the magnetic force, the gravity continues
to dominate the magnetic force during the radial collapse.

The numerical calculations of the fragmentation of magnetized massive col-
lapsing filaments show that the fragmentation is not effective during the rapid
radial collapse, unless perturbations with very large amplitude are imposed ini-
tially. Therefore there is no characteristic density with which the fragmentation
occurs during the isothermal phase. When the radial collapse is decelerated
by some mechanism such as the change of the equation of state, the filament
will fragment. Therefore the change of the equation of states is very important
in the theory of fragmentation. The question of how and when the isothermal
evolution is terminated is explored in the next section.

4. The Characteristic Mass of Fragmentation

In general, molecular clouds are under thermal balance described by the follow-
ing relation.

rg+rext ==Ath, (6)

where r g, r ext, and A th are the compressional heating rate of gas, the heating
rate due to the external sources such as cosmic rays and visual or UV photons
from surrounding stars, and the radiative cooling rate, respectively. The isother-
mal collapse continues during r g « A th and thus r ext ~ A th, but isothermality
is broken down when the compression of gas becomes so effective as to heat up
the cloud sufficiently against the cooling.

Masunaga & Inutsuka (1999) discussed on the critical central density Pcrit

when the isothermal evolution is terminated in gravitational collapse. The con-
dition with which isothermality is broken down is determined as two possibilities.

Optically Thin Case Isothermality is violated when I'g == Ath , if r g over-
whelms Ath before the optical depth of the collapsing cloud core, T, reaches
unity. This critical density is denoted by Pth.

Optically Thick Case If A dif > rg when T ~ 1, isothermality survives even
after T exceeds unity until the central density reaches a critical value Pdif,

which defines the central density when I' g becomes comparable to Adif.

The optical depth, T, of the collapsing filamentary cloud is defined by T ==

Ioco
npdr = iKPcV lI"~t. We also define PT~l at which T >:::: 1 is reached.
Now we evaluate rg, A th, and Adif to derive Pcrit. Note that the heating

and cooling rates are defined per unit mass. For brevity we suppose the local
thermodynamical equilibrium (LTE), which admits Ath to be described simply
as follows.

A th == 4~(11nit)asB1i~it, (7)
where ~ is the frequency-averaged opacity per unit mass, which is independent of
density due to LTE, and aSB denotes Stefan-Boltzmann constant. The temper-
ature is kept at 11nit at the initial isothermal stage. The compressional heating
rate for gravitational collapse is

r g == Ac;V41fGp. (8)
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A numerical constant A is found to be of the order of unity and nearly constant
through the evolution.

The energy transport rate due to radiative diffusion is

(9)

The radiative diffusion time tdif is defined by T2Ap/C, where Ap == 1/~p is the
mean free path of a photon and C is the speed of light.

The critical densities were obtained as

( )
2 (TTl )6+2a-15 -3 ~o .L init

Pth = 4.7 x 10 g. em 0.01em2 . g-l 10K ' (10)

(11)-12 -3 ( ~o ) -2 (11nit) -1-2a
PTrvl = 4.7 x 10 g. em 2 -1 -- .

O.Olcm . g 10K

-13 -3 ( ~o ) -2/3 (11nit) (4-2a)/3
Pdif = 4.7 x 10 g . em 0.01em2 . g-l 10K . (12)

where we assume that the opacity is approximated as ~(11nit) = ~O(11nit/l0K)a,

a = 1 rv 2.
Equations (7) and (9) shows that Ath and Adif are smoothly coy{nected with

each other at T = 1. In other words, Pth == PTrvl and Pdif == PTrvl degenerate into
an identical line in the 11nit-~ plane (see Figure 1, 2 of Masunaga & Inutsuka
1998). Thus the critical density for the violation of isothermality is determined
only by Pth or Pdif, depending upon 11nit and x, for gravitationally collapsing
clouds. The critical density of PTrvl has no significance in practice in the case of
filamentary collapse. This result is in contrast to the classical "opacity limited
fragmentation" pictures of Low & Lynden-Bell 1976, Rees 1976, Silk 1977, and
Boss 1988 where they have assumed the condition "T ~ 1 " plays the essential
role.

We can evaluate M m as the mean clump mass of a filament with the effective
radius of HI = J2c~/1rGPerit' setting the mean separation Am between clumps
to be 8 x HI:

16C~~M m ~ MlineAm ~ -G G· .
1r Pent

Eliminating Perit in equation (13) by equations (10) and (12), we have

M = 3.7 X 10-2M ( ~o ) -1 (11nit) -(3+2a)/2
m 0 0.0Icm2. g-1 10K '

for optically thin case, and

( )
1/3 (T; )(5+2a)/6

M m = 3.7 X 10-3M. ~o init ,
o 0.0Icm2. g-1 10K

for optically thick case.

(13)

(14)

(15)
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5. Mass Function of Molecular Cloud Cores

397

As shown in Section 4.1.1 of Inutsuka & Miyama (1997), a fragment of filament
becomes collapsed and isolated self-gravitating object when the amplitude of
hypothetical linearly growing density perturbation becomes 6c ~ 1.6. This useful
property is used in the following analytical calculation of the mass function of
dense cores.

We consider radially and azimuthally averaged density fluctuation on the
filament whose axis corresponds to the z-axis.

where

o(z) = o~z = pz ~ Pz = p.: - 1,
pz pz pz

(16)

(17)

(18)

pz 1 100121r

-=- = u- p(r, ¢, z) rd¢ dr,
pz 1V11ine 0 0

and Mline is the line-mass of the unperturbed filament. The Fourier transform
of 6(x) is

ok(k) = .L L: o(z)e-ikzdz,

where Am has the dimension of length.
For convenience, we measure the amplitude of overdensity by smoothing

the fluctuation field as follows:

OM(Z) = / o(z')W(z - z')dz', W(z) = sin(kMz) ,
1rZ

(19)

where we have chosen the window function W whose Fourier transform is a
sharp k-space filter for simplicity. We relate mass scale M, length scale AM, and
wavenumber kM by the following simple equations:

M = MlineAM, kM = ~ = 2nMline
AM M

(20)

If we assume density fluctuations 6M is a Gaussian random distribution,
then, the probability P(M, 6 > 6c ) of finding a region of mass scale M in which
the linear density fluctuation is greater than the critical overdensity 6c is given
by an integral over the tail of a Gaussian distribution function,

(21)

where the variance aM can be estimated by summing up the variance of each
Fourier component in the sharp k-space filter:

(22)
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For simplicity we assume a power law form for the fluctuation spectrum,

(23)

where km :=: 21r/Am is the most unstable wavenumber and Mm :=: MlineAm. The
growth rate of the perturbation of filament has the following property (Inutsuka
& Miyama 1992):

w ex: k for k« km .

Thus, the linear growth of the variance might be approximated by

ou = r;g; (~:) nt
1

exp [(t:) (~:)],

(24)

(25)

where tg is on the order of free-fall time.
Finally we can calculate the mass function of collapsed dense cores by the

Press-Schechter formalism (see e.g., Press & Schechter 1974; Peacock & Heavens
1990; Bond et al. 1991; Yano, Nagashima, & Gouda 1996). The resulting mass
function dN/ dM is given by

dN :=: f!Mline~ [~+ (~) (Mm
) ] exp (-~) . (26)

dM Y-; M2 aM 2 tg M 2a it-

The power spectrum with -1 < n < 0 seems to be consistent with the recent
observations (Motte, Andre, & Neri 1998; Testi & Sargent 1999; Onishi et al.
1999).

In the derivation of equation (26), we assume a random Gaussian field whose
power spectrum is a simple power law. This assumption, however, can be directly
tested by observations of actual filamentary clouds, and even determine the
power law exponent n. That is, observational determination of both fluctuation
spectrum and the resulting mass function is expected to be a straight forward
test of the theory.

6. Mean Surface Density of Companions

According to Wiener-Khinchin's theorem, the autocorrelation function is related
to the power spectrum:

(27)

We again adopt a power law form for the power spectrum for simplicity (eq.[23]).
Then autocorrelation function becomes

(28)

where r(x) is Gamma Function.
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Now we calculate the mean surface density of companions (Larson 1995; Si-
mon 1997; Bate, Clarke, & McCaughrean 1998; Nakajima, Tachihara, Hanawa,
& Nakano 1998; Gradwin, Kitsionas, Boffin, & Whitworth 1999). Note, how-
ever, that we are interested in the distribution of dense cores, instead of stellar
distribution. The probability ~p of the number of finding dense cores within the
annulus whose area is 21rB~B corresponds to the number of dense cores within
the length 2~z of the filament that is estimated as

(29)

where nz is the average number of dense cores per unit length of the filament.
Thus the mean surface density E(B) is expressed as

E(O) = n;~ (1 + ~) ex O-n-2 for 0 « Oe (30)

ex: B- 1 for () » Be,

where D is the distance from the observer to the cloud, and we defined (}e by
~(Be) == 1.

The above expression should not be applied to the mean surface density
of stellar companions, because the dynamical evolution of the positions of stars
is considerable and may wipe out the information of the initial density fluc-
tuations. Understanding the mean surface density of stellar companions may
require understanding the collapse and fragmentation processes in each dense
core including the effect of angular momentum (which might be obtained by the
mutual interaction of cores), and understanding the subsequent orbital evolution
of resulting protostars.

More importantly, a direct observation of the mean surface density of the
dense core companions in actual molecular clouds can test the validity of the
above argument, and hopefully determine the parameters in the model (e.g., the
power spectrum exponent n).

SI thanks to Dr. Masahiro Nagashima for useful discussions on Press-Schech-
ter formalism.
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