Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-04T20:58:47.714Z Has data issue: false hasContentIssue false

Doppler imaging results for Ap stars

Published online by Cambridge University Press:  25 May 2016

Artie P. Hatzes*
Affiliation:
McDonald Observatory, University of Texas at Austin Austin, TX, 78712, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Doppler imaging results for the surface abundance distribution on Ap stars are reviewed. The silicon distribution on these stars is often characterized by depleted spots near the magnetic poles and enhancements in ring-like structures at intermediate magnetic latitudes. These results are consistent with the predictions of diffusion theory. On two stars, γ Ari and CU Vir, the silicon enhancements appear very close to a magnetic pole. This can be explained if silicon is enhanced where the magnetic field has its maximum horizontal field strength and these stars possess a decentered dipole field. Doppler images of abundance distributions on Ap stars may be used to accurately measure the obliquity angle and to estimate the decentering parameter for a dipole field. The chromium distribution on at least four Ap stars show a depleted band coincident with the magnetic equator and depleted spots at the magnetic poles. Such a distribution can only arise if the star has a predominantly quadrupole field, or if horizontal diffusion is playing a role in the distribution of elements.

Type
Session III: “Photospheric Phenomena: Results”
Copyright
Copyright © Kluwer 1996 

References

Alecian, G. & Vauclair, S. 1981, A&A , 101, 16.Google Scholar
Babcock, H.W. (1947), ApJ , 105, 105 CrossRefGoogle Scholar
Bohlender, D.A. & Landstreet, J.D. (1990), ApJ Letters , 358, L25 CrossRefGoogle Scholar
Borra, E.F. & Landstreet, J.D. (1980), ApJS , 42, 421 (BL) CrossRefGoogle Scholar
Deutsch, A.J. (1958), Handbk. Phys. , 51, 689 Google Scholar
Donati, J.-F., Semel, M. & del Toro Iniesta, J. C. 1990, A&A , 233, 17.Google Scholar
Falk, A.E. & Wehlau, W.H. 1974, ApJ , 192, 409.CrossRefGoogle Scholar
Goncharsky, A.V., Stepanov, V.V., & Yagola, A.G. (1982), Astr. Zh. , 26, 690 Google Scholar
Goncharsky, A.V., Ryabchikova, T.A., Stepanov, V.V., Khokhlova, V.L., & Yagola, A.G. (1983), Astr. Zh. , 60, 83 Google Scholar
Hatzes, A.P. (1990), MNRAS , 245, 56 CrossRefGoogle Scholar
Hatzes, A.P. (1991), MNRAS , 248, 487 CrossRefGoogle Scholar
Hatzes, A.P., Penrod, G.D., & Vogt, S.S. (1989), ApJ , 341, 456 CrossRefGoogle Scholar
Hiesberger, F. et al., A&A , 296, 473 Google Scholar
Michaud, G. (1970), ApJ , 160, 640 CrossRefGoogle Scholar
Mégessier, C. 1984, A&A , 138, 267.Google Scholar
Piskunov, N., Ryabchikova, T.A., Kusching, R., Weiss, W.W. (1995),Google Scholar
Rice, J.B. & Wehlau, W. (1990), A&A , 233, 512.Google Scholar
Rice, J.B. & Wehlau, W. (1991), A&A , 246, 195.Google Scholar
Rice, J.B. & Wehlau, W. (1994), A&A , 291, 825.Google Scholar
Stibbs, D.W.N. 1950, MNRAS , 110, 395.CrossRefGoogle Scholar
Vauclair, S., Hardorp, J. & Peterson, D. 1979, ApJ , 227, 526.CrossRefGoogle Scholar