Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T00:11:57.234Z Has data issue: false hasContentIssue false

Comparison between Extrasolar Planets and Low-Mass Secondaries

Published online by Cambridge University Press:  13 May 2016

Tsevi Mazeh
Affiliation:
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
Shay Zucker
Affiliation:
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper compares the statistical features of the sample of discovered extrasolar planets with those of the secondaries in nearby spectroscopic binaries, in order to enable us to distinguish between the two populations. Based on 32 planet candidates discovered until March 2000, we find that their eccentricity and period distribution are surprisingly similar to those of the binary population, while their mass distribution is remarkably different. The mass distributions definitely support the idea of two distinct populations, suggesting the planet candidates are indeed extrasolar planets. The transition between the two populations probably occurs at 10–30 Jupiter masses. We point out a possible negative correlation between the orbital period of the planets and the metallicity of their parent stars, which holds only for periods less than about 100 days. These short-period systems are characterized by circular or almost circular orbits.

Type
XIII. Planet Formation in Binary Systems
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Burrows, A., Marley, M., Hubbard, W. B., Lunine, J. I., Guillot, T., Saumon, D., Freedman, R., Sudarsky, D., & Sharp, C. 1997, ApJ, 491, 856.Google Scholar
Butler, R. P., Vogt, S., Marcy, G. W., Fischer, D., Henry, G., & Apps, K. 2000, ApJ, accepted.Google Scholar
Carney, B. W., & Latham, D. W. 1987, AJ, 92, 116.Google Scholar
Crawford, D. L. 1975, AJ, 80, 955.Google Scholar
Duquennoy, A., & Mayor, M. 1991, A&A, 248, 485.Google Scholar
Giménez, A. 2000, A&A, 356, 213.Google Scholar
Goldberg, D. 2000, Ph.D. thesis, Tel Aviv University.Google Scholar
Goldberg, D., Mazeh, T., Latham, D. W., Stefanik, R. P., Carney, B. W., & Laird, J. B. 2000, submitted to A&A.Google Scholar
Goldman, I., & Mazeh, T. 1991, ApJ, 376,260.Google Scholar
Gonzalez, G. 1997, MNRAS, 285, 403.Google Scholar
Gonzalez, G. 2000 in Disks, Planetesimals and Planets, ed. Garcon, F., Eiron, C., de Winter, D. & Mahoney, T. J., in press.Google Scholar
Goodman, J., & Oh, S. P. 1997, ApJ, 486, 403.Google Scholar
Halbwachs, J.-L., Mayor, M., & Udry, S. 1998, in Brown Dwarfs and Extrasolar Planets, ed. Rebolo, R., Martin, E. L. & Zapaterio Osorio, M. R. (ASPC)Google Scholar
Halbwachs, J.-L., Arenou, F., Mayor, M., Udry, S., & Queloz, D. 2000, A&A, 355, 581.Google Scholar
Hauck, B., & Mermilliod, M. 1998, A&AS, 334, 221.Google Scholar
Heacox, W. D. 1999, ApJ, 526, 928.Google Scholar
Latham, D. W., Stefanik, R. P., Torres, G., Davis, R. J., Mazeh, T., Carney, B. W., Laird, J. B., & Morse, J. A. 2000, submitted to A&A.Google Scholar
Lin, D. N. C., Papaloizou, J. C. B., Terquem, C., Bryden, G., & Ida, S. 2000 in Protostars and Planets IV, ed. Mannings, V., Boss, A. P., Russell, S. S. (Tucson: University of Arizona Press), 1111.Google Scholar
Lucas, P. W., & Roche, P. F. 2000, MNRAS, accepted.Google Scholar
Marcy, G. W., & Butler, R. P. 1998, ARA&A, 36, 57.Google Scholar
Marcy, G. W., Cochran, W. D., & Mayor, M. 2000 in Protostars and Planets IV ed. Mannings, V., Boss, A. P., Russell, S. S. (Tucson: University of Arizona Press), 1285 (MCM).Google Scholar
Mayor, M., Queloz, D., Udry, S., & Halbwachs, J.-L. 1997, in IAU Coll. 161, Astronomical and Biochemical Origins and Search for Life in the Universe ed. Cosmovici, C. B., Boyer, S. & Werthimer, D. (Bolognia: Editrice Compositori) 313.Google Scholar
Mayor, M. & Udry, S. 2000, in Disks, Planetesimals and Planets, ed. Garcon, F., Eiron, C., de Winter, D. & Mahoney, T. J., in press.Google Scholar
Mazeh, T. 1999a, Physics Reports, 311, 317.Google Scholar
Mazeh, T. 1999b, in ASP Conf. Ser. 185, IAU Coll. 170, Precise Stellar Radial Velocities, ed. Hearnshaw, J. B. & Scarfe, C. D., (San Francisco: ASP), 131.Google Scholar
Mazeh, T. et al. 2000, ApJ, 532, L55.Google Scholar
Mazeh, T., Goldberg, D., & Latham, D. W. 1998, ApJL, 501, L199, (MGL).Google Scholar
Mazeh, T., Mayor, M., & Latham, D. W. 1996, ApJ, 478, 367.Google Scholar
Olsen, E. H. 1984, A&AS, 57, 443.Google Scholar
Queloz, D., Mayor, M., Weber, L., Blécha, A., Burnet, M., Confino, B., Naef, D., Pepe, F., Santos, N., & Udry, S. 2000 A&A, 354, 99.Google Scholar
Schneider, J. 2000, in Extrasolar Planets Encyclopaedia http://www.obspm.fr/planets.Google Scholar
Stepinski, T. F., & Black, D. C. 2000, in Birth and Evolution of Binary Stars, Poster Proc. IAU Symp. 200, ed. Reipurth, B. & Zinnecker, H., (Potsdam), 167.Google Scholar
Trilling, D. E. 2000, ApJ, 537, L61.Google Scholar
Weidenschilling, S. J., & Marzari, F. 1996, Nature, 384, 619.Google Scholar
Zahn, J.-P., & Bouchet, L. 1989, A&A, 223, 112.Google Scholar